首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indirect immunofluorescence was used to determine the distribution of calmodulin in the mitotic apparatus of rat kangaroo PtK2 and Chinese hamster ovary (CHO) cells. The distribution of calmodulin in PtK2 cells was compared to the distribution of tubulin, also as revealed by indirect immunofluorescence. During mitosis, calmodulin was found to be a dynamic component of the mitotic apparatus. Calmodulin first appeared in association with the forming mitotic apparatus during midprophase. In metaphase and anaphase, calmodulin was found between the spindle poles and the chromosomes. While tubulin was found in the interzonal region throughout anaphase, calmodulin appeared in the interzone region only at late anaphase. The interzonal calmodulin of late anaphase condensed during telophase into two small regions, one on each side of the midbody. Calmodulin was not detected in the cleavage furrow. In view of the differences in the localization of calmodulin, tubulin, and actin in the mitotic apparatus, experiments were designed to determine the effects of various antimitotic drugs on calmodulin localization. Cytochalasin B, an inhibitor of actin microfilaments, had no apparent effect on calmodulin or tubulin localization in the mitotic apparatus of CHO cells. Microtubule inhibitors, such as colcemid and N2O, altered the appearance of tubulin- and calmodulin-specific fluorescence in mitotic CHO cells. Cold temperature (0 degrees C) altered tubulin-specific fluorescence of metaphase PtK2 cells but did not alter calmodulin-specific fluorescence. From these studies, it is concluded that calmodulin is more closely associated with the kinetichore-to-pole microtubules than other components of the mitotic apparatus.  相似文献   

2.
NMCP1 is a plant protein that has a long coiled-coil domain within the molecule. Newly identified NMCP2 of Daucus carota and Apium graveolens showed similar peripheral localization in the interphase nucleus, and the sequence spanning the coiled-coil domain exhibited significant similarity with the corresponding region of NMCP1. To better understand disassembly and assembly of the nuclear envelope (NE) during mitosis, subcellular distribution of NMCP1 and NMCP2 was examined using A. graveolens cells. AgNMCP1 (NMCP1 in Apium) disassembled at prometaphase, dispersed mainly within the spindle, and accumulated on segregating chromosomes, while AgNMCP2 (NMCP2 in Apium), following disassembly at prometaphase with timing similar to that of AgNMCP1, dispersed throughout the mitotic cytoplasm at metaphase and anaphase. The protein accumulated at the periphery of reforming nuclei at telophase. A probe for the endomembrane indicated that the nuclear membrane (NM) disappears at prometaphase and begins to reappear at early telophase. Growth of the NM continued after mitosis was completed. NMCP2 in the mitotic cytoplasm localized in vesicular structures that could be distinguished from the bulk endomembrane system. These results suggest that NMCP1 and NMCP2 are recruited for NE assembly in different pathways in mitosis and that NMCP2 associates with NM-derived vesicles in the mitotic cytoplasm.  相似文献   

3.
In previous work we injected mitotic cells with fluorescent tubulin and photobleached them to mark domains on the spindle microtubules. We concluded that chromosomes move poleward along kinetochore fiber microtubules that remain stationary with respect to the pole while depolymerizing at the kinetochore. In those experiments, bleached zones in anaphase spindles showed some recovery of fluorescence with time. We wished to determine the nature of this recovery. Was it due to turnover of kinetochore fiber microtubules or of nonkinetochore microtubules or both? We also wished to investigate the question of turnover of kinetochore microtubules in metaphase. We microinjected cells with x- rhodamine tubulin (x-rh tubulin) and photobleached spindles in anaphase and metaphase. At various times after photobleaching, cells were detergent lysed in a cold buffer containing 80 microM calcium, conditions that led to the disassembly of almost all nonkinetochore microtubules. Quantitative analysis with a charge coupled device image sensor revealed that the bleached zones in anaphase cells showed no fluorescence recovery, suggesting that these kinetochore fiber microtubules do not turn over. Thus, the partial fluorescence recovery seen in our earlier anaphase experiments was likely due to turnover of nonkinetochore microtubules. In contrast fluorescence in metaphase cells recovered to approximately 70% the control level within 7 min suggesting that many, but perhaps not all, kinetochore fiber microtubules of metaphase cells do turn over. Analysis of the movements of metaphase bleached zones suggested that a slow poleward translocation of kinetochore microtubules occurred. However, within the variation of the data (0.12 +/- 0.24 micron/min), it could not be determined whether the apparent movement was real or artifactual.  相似文献   

4.
A role for Drosophila SMC4 in the resolution of sister chromatids in mitosis   总被引:10,自引:0,他引:10  
BACKGROUND: Faithful segregation of the genome during mitosis requires interphase chromatin to be condensed into well-defined chromosomes. Chromosome condensation involves a multiprotein complex known as condensin that associates with chromatin early in prophase. Until now, genetic analysis of SMC subunits of the condensin complex in higher eukaryotic cells has not been performed, and consequently the detailed contribution of different subunits to the formation of mitotic chromosome morphology is poorly understood. RESULTS: We show that the SMC4 subunit of condensin is encoded by the essential gluon locus in Drosophila. DmSMC4 contains all the conserved domains present in other members of the structural-maintenance-of-chromosomes protein family. DmSMC4 is both nuclear and cytoplasmic during interphase, concentrates on chromatin during prophase, and localizes to the axial chromosome core at metaphase and anaphase. During decondensation in telophase, most of the DmSMC4 leaves the chromosomes. An examination of gluon mutations indicates that SMC4 is required for chromosome condensation and segregation during different developmental stages. A detailed analysis of mitotic chromosome structure in mutant cells indicates that although the longitudinal axis can be shortened normally, sister chromatid resolution is strikingly disrupted. This phenotype then leads to severe chromosome segregation defects, chromosome breakage, and apoptosis. CONCLUSIONS: Our results demonstrate that SMC4 is critically important for the resolution of sister chromatids during mitosis prior to anaphase onset.  相似文献   

5.
Microtubule dynamics have key roles in mitotic spindle assembly and chromosome movement [1]. Fast turnover of spindle microtubules at metaphase and polewards flux of microtubules (polewards movement of the microtubule lattice with depolymerization at the poles) at both metaphase and anaphase have been observed in mammalian cells [2]. Imaging spindle dynamics in genetically tractable yeasts is now possible using green fluorescent protein (GFP)-tagging of tubulin and sites on chromosomes [3] [4] [5] [6] [7] [8]. We used photobleaching of GFP-labeled tubulin to observe microtubule dynamics in the fission yeast Schizosaccharomyces pombe. Photobleaching did not perturb progress through mitosis. Bleached marks made on the spindle during metaphase recovered their fluorescence rapidly, indicating fast microtubule turnover. Recovery was spatially non-uniform, but we found no evidence for polewards flux. Marks made during anaphase B did not recover fluorescence, and were observed to slide away from each other at the same rate as spindle elongation. Fast microtubule turnover at metaphase and a switch to stable microtubules at anaphase suggest the existence of a cell-cycle-regulated molecular switch that controls microtubule dynamics and that may be conserved in evolution. Unlike the situation for vertebrate spindles, microtubule depolymerization at poles and polewards flux may not occur in S. pombe mitosis. We conclude that GFP-tubulin photobleaching in conjunction with mutant cells should aid research on molecular mechanisms causing and regulating dynamics.  相似文献   

6.
We recently described the identification of a centrosome/spindle pole associated protein, CSPP, involved in cell cycle progression. Here we report a CSPP isoform denoted CSPP-L, with a 294 amino acids longer N-terminus and a 51 amino acids insertion located in the coiled-coil mid-domain. Expression analysis indicates an inverse cell cycle dependent regulation. CSPP mRNA expression is highest in G1 whereas CSPP-L expression is highest in G2/M. Ectopic expression of CSPP-L impairs cell cycle progression weaker in G1 than CSPP. Furthermore, normal mitotic phenotypes were observed in CSPP-L but not in CSPP transfectants. CSPP-L relocates from spindle microtubules and poles in metaphase to the mid-spindle in anaphase and concentrates at the mid-body in telophase/cytokinesis. CSPP-L high-expressing mitotic cells were predominantly characterized by lagging chromosomes or monopolar spindles, in contrast to the predominant multipolar spindles observed with CSPP expression. The different effects of CSPP and CSPP-L on microtubule organization in mitosis depend on the coiled-coil mid-domain insertion. The common C-terminal domain is required to repress that activity until mitosis. Notably, this C-terminal domain alone can associate with centrosomes in a microtubule independent manner. Taken together, CSPP and CSPP-L interact with centrosomes and microtubules and can differently affect microtubule organization.  相似文献   

7.
Mitotic spindles isolated from sea urchin eggs can be reactivated to undergo mitotic processes in vitro. Spindles incubated in reactivation media containing sea urchin tubulin and nucleotides undergo pole-pole elongation similar to that observed in living cells during anaphase-B. The in vitro behavior of spindles isolated during metaphase and anaphase are compared. Both metaphase and anaphase spindles undergo pole-pole elongation with similar rates, but only in the presence of added tubulin. In contrast, metaphase but not anaphase spindles increase chromosome-pole distance in the presence of exogenous tubulin, suggesting that in vitro, tubulin can be incorporated at the kinetochores of metaphase but not anaphase chromosomes. The rate of spindle elongation, ultimate length achieved, and the increase in chromosome-pole distance for isolated metaphase spindles is related to the concentration of available tubulin. Pole-pole elongation and chromosome-pole elongation does not require added adenosine triphosphate (ATP). Guanosine triphosphate (GTP) will support all activities observed. Thus, the force generation mechanism for anaphase-B in isolated sea urchin spindles is independent of added ATP, but dependent on the availability of tubulin. These results support the hypothesis that the mechanism of force generation for anaphase-B is linked to the incorporation of tubulin into the mitotic apparatus. (If, in addition, a microtubule-dependent motor-protein(s) is acting to generate force, it does not appear to be dependent on ATP as the exclusive energy source.  相似文献   

8.
The monoclonal antibody MPM-2 recognizes a family of phosphorylated proteins present in mitotic cells. In a number of organisms it stains nuclei and also cytoskeletal structures which contain or organize tubulin. In mitotic Chlamydomonas reinhardtii cells MPM-2 reacts with phosphoproteins associated with the nuclear envelope (NE). Staining of the NE region appears in preprophase, reaches a maximum intensity in metaphase/anaphase and disappears rapidly in telophase. Localized hyperphosphorylation of the anterior NE region is apparent in many cells throughout mitosis. The distribution and timing of MPM-2 labeling suggests that in Chlamydomonas MPM-2 may be interacting with lamin-like phosphoproteins.  相似文献   

9.
ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM   总被引:12,自引:8,他引:4  
Mitosis in Fusarium oxysporum Schlect. was studied by light and electron microscopy. The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows: prophase, 70 sec; metaphase, 120 sec; anaphase, 13 sec; and telophase, 125 sec, for a total of 5.5 min. New postfixation procedures were developed specifically to preserve the fine-structure of the mitotic apparatus. Electron microscopy of mitotic nuclei revealed a fibrillo-granular, extranuclear Spindle Pole Body (SPB) at each pole of the intranuclear, microtubular spindles. Metaphase chromosomes were attached to spindle microtubules via kinetochores, which were found near the spindle poles at telophase. The still-intact, original nuclear envelope constricted around the incipient daughter nuclei during telophase.  相似文献   

10.
Polarity of spindle microtubules in Haemanthus endosperm   总被引:12,自引:7,他引:5       下载免费PDF全文
Structural polarities of mitotic spindle microtubules in the plant Haemanthus katherinae have been studied by lysing endosperm cells in solutions of neurotubulin under conditions that will decorate cellular microtubules with curved sheets of tubulin protofilaments. Microtubule polarity was observed at several positions in each cell by cutting serial thin sections perpendicular to the spindle axis. The majority of the microtubules present in a metaphase or anaphase half-spindle are oriented with their fast-growing or "plus" ends distal to the polar area. Near the polar ends of the spindle and up to about halfway between the kinetichores and the poles, the number of microtubules with opposite polarity is low: 8-20% in metaphase and 2-15% in anaphase cells. Direct examination of 10 kinetochore fibers shows that the majority of these microtubules, too, are oriented with their plus ends distal to the poles, as had been previously shown in animal cells. Sections from the region near the spindle equator reveal an increased fraction of microtubules with opposite polarity. Graphs of polarity vs. position along the spindle axis display a smooth transition from microtubules of one orientation near the first pole, through a region containing equal numbers of the two orientations, to a zone near the second pole where the opposite polarity predominates. We conclude that the spindle of endosperm cells is constructed from two sets of microtubules with opposite polarity that interdigitate near the spindle equator. The length of the zone of interdigitation shortens from metaphase through telophase, consistent with a model that states that during anaphase spindle elongation in Haemanthus, the interdigitating sets of microtubules are moved apart. We found no major changes in the distribution of microtubule polarity in the spindle interzone from anaphase to telophase when cells are engaged in phragmoplast formation. Therefore, the initiation and organization of new microtubules, thought to take place during phragmoplast assembly, must occur without significant alteration of the microtubule polarity distribution.  相似文献   

11.
Echinoderm microtubule-associated protein (EMAP)-like (EML) family proteins are microtubule-associated proteins that have a conserved hydrophobic EMAP-like protein (HELP) domain and multiple WD40 domains. In this study, we examined the role of EML4, which is a member of the EML family, in cell division. Time-lapse microscopy analysis demonstrated that EML4 depletion induced chromosome misalignment during metaphase and delayed anaphase initiation. Further analysis by immunofluorescence showed that EML4 was required for the organization of the mitotic spindle and for the proper attachment of kinetochores to microtubules. We searched for EML4-associating proteins by mass spectrometry analysis and found that the nuclear distribution gene C (NUDC) protein, which is a critical factor for the progression of mitosis, was associated with EML4. This interaction was mediated by the WD40 repeat of EML4 and by the C-terminus of NUDC. In the absence of EML4, NUDC was no longer able to localize to the mitotic spindle, whereas NUDC was dispensable for EML4 localization. Our results show that EML4 is critical for the loading of NUDC onto the mitotic spindle for mitotic progression.  相似文献   

12.
The mitotic phases and the changes that the chromatin and mitotic microtubules undergo during mitosis in the sexually transmitted parasite Trichomonas vaginalis are described. Parasites arrested in the gap 2 phase of the cell cycle by nutrient starvation were induced to mitosis by addition of fresh whole medium. [(3)H] Thymidine labeling of trichomonad parasites for 24 h showed that parasites have at least four synchronic duplications after mitosis induction. Fixed or live and acridine orange (AO)-stained trichomonads analyzed at different times during mitosis by epifluorescence microscopy showed that mitosis took about 45 min and is divided into five stages: prophase, metaphase, early and late anaphase, early and late telophase, and cytokinesis. The AO-stained nucleus of live trichomonads showed green (DNA) and orange (RNA) fluorescence, and the nucleic acid nature was confirmed by DNase and RNase treatment, respectively. The chromatin appeared partially condensed during interphase. At metaphase, it appeared as six condensed chromosomes, as recently reported, which decondensed at anaphase and migrated to the nuclear poles at telophase. In addition, small bundles of microtubules (as hemispindles) were detected only in metaphase with the polyclonal antibody anti-Entamoeba histolytica alpha-tubulin. This antibody showed that the hemispindle and an atractophore-like structure seem to duplicate and polarize during metaphase. In conclusion, T. vaginalis mitosis involves five mitotic phases in which the chromatin undergoes different degrees of condensation, from chromosomes to decondensed chromatin, and two hemispindles that are observed only in the metaphase stage.  相似文献   

13.
The vesicular compartment of the mitotic apparatus in mammalian cells   总被引:1,自引:0,他引:1  
Intracellular membranes might play an eminent role in regulating several events during mitosis: In this paper the appearance and changing configurations of the vesicular compartment of the mitotic apparatus of HeLa cells was studied from anaphase to telophase. In early prophase electron opaque and transparent membranous vesicles are found in the pericentriolar region outside the nucleus. During prometaphase when the nuclear envelope opens and starts to disappear, an increasing number of these vesicles appears in the mitotic apparatus near the chromosomes. During metaphase vesicles are spread all over the mitotic apparatus, the number of electron opaque vesicles decreases while the total amount of vesicles does not change significantly. Anaphase shows the same pattern of distribution in the half-spindle and in the midbody. In telophase the amount of electron opaque vesicles increases again. They are now found around vacuoles and near the newly appearing Golgi-cisternae. We assume that the electron opaque vesicles are derived from the Golgi- apparatus which disintegrates during prophase and reappears in late telophase. The change in the appearance of the different types of vesicles during metaphase coincides with drastic changes in the ionic milieu in the mitotic apparatus (Wolniak et al., 1983).  相似文献   

14.
Papillomaviral DNA replicates as extrachromosomal plasmids in squamous epithelium. Viral DNA must segregate equitably into daughter cells to persist in dividing basal/parabasal cells. We have previously reported that the viral origin binding protein E2 of human papillomavirus types 11 (HPV-11), 16, and 18 colocalized with the mitotic spindles. In this study, we show the localization of the HPV-11 E2 protein to be dynamic. It colocalized with the mitotic spindles during prophase and metaphase. At anaphase, it began to migrate to the central spindle microtubules, where it remained through telophase and cytokinesis. It was additionally observed in the midbody at cytokinesis. A peptide spanning residues 285 to 308 in the carboxyl-terminal domain of HPV-11 E2 (E2C) is necessary and sufficient to confer localization on the mitotic spindles. This region is conserved in HPV-11, -16, and -18 and bovine papillomavirus type 4 (BPV-4) E2 and is also required for the respective E2C to colocalize with the mitotic spindles. The E2 protein of bovine papillomavirus type 1 is tethered to the mitotic chromosomes via the cellular protein Brd4. However, the HPV-11 E2 protein did not associate with Brd4 during mitosis. Lastly, a chimeric BPV-1 E2C containing the spindle localization domain from HPV-11 E2C gained the ability to localize to the mitotic spindles, whereas the reciprocal chimera lost the ability. We conclude that this region of HPV E2C is critical for localization with the mitotic apparatus, enabling the HPV DNA to sustain persistent infections.  相似文献   

15.
alpha-Tubulin in the microtubules of mouse oocytes and embryos is acetylated in a specific spatial and temporal sequence. In the unfertilized oocyte, a monoclonal antibody to the acetylated form of alpha-tubulin is bound predominantly at the poles of the arrested metaphase meiotic spindle. The labeling intensity of the spindle microtubules is weaker as observed by immunofluorescence using oocytes double-labeled for total tubulin and acetylated alpha-tubulin, and as measured by immuno high-voltage electron microscopy (immunoHVEM) with colloidal gold; cytasters are not acetylated. At meiotic anaphase, the spindle becomes labeled, and by telophase and during second polar body formation only the meiotic midbody is acetylated. The sperm axoneme retains its acetylation after incorporation though the interphase microtubules are not detected. First mitosis follows a pattern similar to that observed at the second meiosis and during interphase only the mitotic midbodies are acetylated. After treatment with cold, colcemid, or griseofulvin, the remaining stable microtubules are acetylated, but immunoHVEM observations suggest that these fibers might not have been acetylated prior to microtubule disruption. Taxol stabilization does not alter acetylation patterns. Acetylated microtubules are not necessarily old microtubules since acetylated fibers are observed at 30 sec after cold recovery. These results show the presence of acetylated microtubules during meiosis and mitosis and demonstrate a cell-cycle-specific pattern of acetylation, with acetylated microtubules found at the centrosomes at metaphase, an increase in spindle labeling at anaphase, and the selective deacetylation of all but midbody microtubules at telophase.  相似文献   

16.
17.
Rabbit antibodies against actin and tubulin were used in an indirect immunofluorescence study of the structure of the mitotic spindle of PtK1 cells after lysis under conditions that preserve anaphase chromosome movement. During early prophase there is no antiactin staining associated with the mitotic centers, but by late prophase, as the spindle is beginning to form, a small ball of actin antigenicity is found beside the nucleus; After nuclear envelope breakdown, the actiactin stains the region around each mitotic center, and becomes organized into fibers that run between the chromosomes and the poles. Colchicine blocks this organization, but does not disrupt the staining at the poles. At metaphase the antiactin reveals a halo of ill-defined radius around each spindle pole and fibers that run from the poles to the metaphase plate. Antitubulin shows astral rays, fibers running from chromosomes to poles, and some fibers that run across the metaphase plate. At anaphase, there is a shortening of the antiactin-stained fibers, leaving a zone which is essentially free of actin-staining fluorescence between the separating chromosomes. Antitubulin stains the region between chromosomes and poles, but also reveals substantial fibers running through the zone between separating chromosomes. Cells fixed during cytokinesis show actin in the region of the cleavage furrow, while antitubulin reveals the fibrous spindle remnant that runs between daughter cells. These results suggest that actin is a component of the mammalian mitotic spindle, that the distribution of actin differs from that of tubulin and that the distributions of these two fibrous proteins change in different ways during anaphase.  相似文献   

18.
U Surana  A Amon  C Dowzer  J McGrew  B Byers    K Nasmyth 《The EMBO journal》1993,12(5):1969-1978
It is widely assumed that degradation of mitotic cyclins causes a decrease in mitotic cdc2/CDC28 kinase activity and thereby triggers the metaphase to anaphase transition. Two observations made on the budding yeast Saccharomyces cerevisiae are inconsistent with this scenario: (i) anaphase occurs in the presence of high levels of kinase in cdc15 mutants and (ii) overproduction of a B-type mitotic cyclin causes arrest not in metaphase as previously reported but in telophase. Kinase destruction is therefore implicated in the exit from mitosis rather than the entry into anaphase. The behaviour of esp1 mutants shows in addition that kinase destruction can occur in the absence of anaphase completion. The execution of anaphase and the destruction of CDC28 kinase activity therefore appear to take place independently of one another.  相似文献   

19.
The localizations of tubulin and calmodulin were investigated in the mouse oocyte during the second meiosis by fluorescently labeling and microinjecting these proteins prepared from porcine brain tissue. When injected, both tubulin and calmodulin were quickly incorporated into the preformed meiotic apparatus of the oocyte at metaphase. The localization of labeled tubulin was coincident with that of birefringence. However, the localization of labeled calmodulin was somewhat different: the fluorescence of calmodulin was intense in the polar regions of the spindle. After the chromosomes began to move, followed by parthenogenetic activation upon microinjection of a calcium buffer, these two fluorescent proteins, localized in the meiotic apparatus, moved to the interzonal region of the spindle during anaphase. At late anaphase and throughout telophase, calmodulin was excluded from the mid-bodylike structures in the interzonal region, whereas tubulin did accumulate in these structures.  相似文献   

20.
Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report the identification of a novel Drosophila protein, which we call Kebab (kinetochore and EB1 associated basic protein), through in vitro expression screening for EB1-interacting proteins. Kebab fused to GFP shows a novel pattern of dynamic localisation in mitosis. It localises to kinetochores weakly in metaphase and accumulates progressively during anaphase. In telophase, it associates with microtubules in central-spindle and centrosomal regions. The localisation to kinetochores depends on microtubules. The protein has a domain most similar to the atypical CH domain of Ndc80, and a coiled-coil domain. The interaction with EB1 is mediated by two SxIP motifs but is not required for the localisation. Depletion of Kebab in cultured cells by RNA interference did not show obvious defects in mitotic progression or microtubule organisation. Generation of mutants lacking the kebab gene indicated that Kebab is dispensable for viability and fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号