首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Biofeedback based on electromyograms (EMGs) has been recently proposed to reduce exaggerated postural activity. Whether the effect of EMG biofeedback on the targeted muscles generalizes to – or is compensated by – other muscles is still an open question we address here. Fourteen young individuals were tested in three 60 s standing trials, without and with EMG-audio feedback: (i) collectively from soleus and medial gastrocnemius and (ii) from medial gastrocnemii. The Root Mean Square (RMS) of bipolar EMGs sampled from postural muscles bilaterally was computed to assess the degree of activity and postural sway was assessed from the center of pressure (CoP). In relation to standing at naturally, EMG-audio feedback from soleus and medial gastrocnemii decreased plantar flexors’ activity (∼10 %) but at the cost of increased amplitude of tibialis anterior (∼5%) and vasti muscles (∼20 %) accompanied by a posterior shift of the mean CoP position. However, EMG-audio feedback from medial gastrocnemii reduced only plantar flexors’ activity (∼5%) when compared to standing at naturally. Current results suggest the EMG biofeedback has the potential to reduce calf muscles’ activity without loading other postural muscles especially when using medial gastrocnemii as feedback source, with implications on postural training aimed at assisting individuals in activating more efficiently postural muscles during standing.  相似文献   

2.
Electromyogram signal (EMG) measurement frequently experiences uncertainty attributed to issues caused by technical constraints such as cross talk and maximum voluntary contraction. Due to these problems, individual EMGs exhibit uncertainty in representing their corresponding muscle activations. To regulate this uncertainty, we proposed an EMG refinement, which refines EMGs with regulating the contribution redundancy of the signals from EMGs to approximating torques through EMG-driven torque estimation (EDTE) using the muscular skeletal forward dynamic model. To regulate this redundancy, we must consider the synergistic contribution redundancy of muscles, including “unmeasured” muscles, to approximating torques, which primarily causes redundancy of EDTE. To suppress this redundancy, we used the concept of muscle synergy, which is a key concept of analyzing the neurophysiological regulation of contribution redundancy of muscles to exerting torques. Based on this concept, we designed a muscle-synergy-based EDTE as a framework for EMG refinement, which regulates the abovementioned uncertainty of individual EMGs in consideration of unmeasured muscles. In achieving the proposed EMG refinement, the most considerable point is to suppress a large change such as overestimation attributed to enhancement of the contribution of particular muscles to estimating torques. Therefore it is reasonable to refine EMGs by minimizing the change in EMGs. To evaluate this model, we used a Bland-Altman plot, which quantitatively evaluates the proportional bias of refined signals to EMGs. Through this evaluation, we showed that the proposed EDTE minimizes the bias while approximating torques. Therefore this minimization optimally regulates the uncertainty of EMGs and thereby leads to optimal EMG refinement.  相似文献   

3.
The purpose of the study was to evaluate the use of cross-correlation analysis between simulated surface electromyograms (EMGs) of two muscles to quantify motor unit synchronization. The volume conductor simulated a cylindrical limb with two muscles and bone, fat, and skin tissues. Models of two motor neuron pools were used to simulate 120 s of surface EMG that were detected over both muscles. Short-term synchrony was established using a phenomenological model that aligned the discharge times of selected motor units within and across muscles to simulate physiological levels of motor unit synchrony. The correlation between pairs of surface EMGs was estimated as the maximum of the normalized cross-correlation function. After imposing four levels of motor unit synchrony across muscles, five parameters were varied concurrently in the two muscles to examine their influence on the correlation between the surface EMGs: 1) excitation level (5, 10, 15, and 50% of maximum); 2) muscle size (350 and 500 motor units); 3) fat thickness (1 and 4 mm); 4) skin conductivity (0.1 and 1 S/m); and 5) mean motor unit conduction velocity (2.5 and 4 m/s). Despite a constant and high level of motor unit synchronization among pairs of motor units across the two muscles, the cross-correlation index ranged from 0.08 to 0.56, with variation in the five parameters. For example, cross-correlation of EMGs from pairs of hand muscles, each having thin layers of subcutaneous fat and mean motor unit conduction velocities of 4 m/s, may be relatively insensitive to the level of synchronization across muscles. In contrast, cross-correlation of EMGs from pairs of leg muscles, with larger fat thickness, may exhibit a different sensitivity. These results indicate that cross correlation of the surface EMGs from two muscles provides a limited measure of the level of synchronization between motor units in the two muscles.  相似文献   

4.
Electromyograms (EMGs) need to be normalized if comparisons are sought between trials when electrodes are reapplied, as well as between different muscles and individuals. The methods used to normalize EMGs recorded from healthy individuals have been appraised for more than a quarter of a century. Eight methods were identified and reviewed based on criteria relating to their ability to facilitate the comparison of EMGs. Such criteria included the magnitude and pattern of the normalized EMG, reliability, and inter-individual variability. If the aim is to reduce inter-individual variability, then the peak or mean EMG from the task under investigation should be used as the normalization reference value. However, the ability of such normalization methods to facilitate comparisons of EMGs is questionable. EMGs from MVCs can be as reliable as those from submaximal contractions, and do not appear to be affected by contraction mode or joint kinematics, particularly for the elbow flexors. Thus, the EMG from an isometric MVC is endorsed as a normalization reference value. Alternatively the EMG from a dynamic MVC can be used, although it is recognized that neither method is guaranteed to be able to reveal how active a muscle is in relation to its maximal activation capacity.  相似文献   

5.
We assessed the effects of cooling the ventral medullary surface (VMS) on the activity of chest wall and abdominal expiratory muscles in eight anesthetized artificially ventilated dogs after vagotomy and denervation of the carotid sinus nerves. Electromyograms (EMGs) of the triangularis sterni, internal intercostal, abdominal external oblique, abdominal internal oblique, and transversus abdominis muscles were measured with EMG of the diaphragm as an index of inspiratory activity. Bilateral localized cooling (2 x 2 mm) in the thermosensitive intermediate part of the VMS produced temperature-dependent reduction in the EMG of diaphragm and abdominal muscles. The rib cage expiratory EMGs were little affected at 25 degrees C; their amplitudes decreased at lower VMS temperatures (less than 20 degrees C) but by significantly fewer degrees than the diaphragmatic and abdominal expiratory EMGs at a constant VMS temperature. With moderate to severe cooling (less than 20 degrees C) diaphragmatic EMG disappeared, but rib cage expiratory EMGs became tonic and resumed a phasic pattern shortly before the recovery of diaphragmatic EMG during rewarming of the VMS. These results indicate that the effects of cooling the VMS differ between the activity of rib cage and abdominal expiratory muscles. This variability may be due to inhomogeneous inputs from the VMS to expiratory motoneurons or to a different responsiveness of various expiratory motoneurons to the same input either from the VMS or the inspiratory neurons.  相似文献   

6.
The electromyograms (EMG) of shivering human subjects exposed to 0 degrees C air in an environmental chamber were analyzed to detect slow-amplitude modulations (SAMs, less than 1 Hz) in the EMGs of widely separated muscles and to study the relationship of these SAMs to respiration rate and skin temperature. Distinct amplitude modulations were observed in the raw EMGs during shivering. The peaks in EMG activity occurred simultaneously in the majority of the monitored muscles in all subjects. Pearson correlations between the average rectified EMGs of 93% of the muscles were significant (P less than 0.05). Visual analysis of the EMG and respiration signals indicated that the peaks in muscular activity occurred 6-12 times/min, whereas respiration ranged from 10 to 23 cycles/min. For all subjects respiration was at a higher frequency than amplitude modulation in the EMG. Comparison of EMG records with expiratory flow rate traces in shivering subjects indicated no one-to-one correlation between the occurrence of respiration and EMG amplitude modulations. Respiratory flow rate and average rectified EMG showed significant correlation in only 33% of the cases. In addition, skin temperature changes could not be correlated with the SAMS.  相似文献   

7.
Some muscles have demonstrated a differential recruitment of their motor units in relation to their location and the nature of the motor task performed; this involves functional compartmentalization. There is little evidence that demonstrates the presence of a compartmentalization of the superficial masseter muscle during biting. The aim of this study was to describe the topographic distribution of the activity of the superficial masseter (SM) muscle’s motor units using high-density surface electromyography (EMGs) at different bite force levels. Twenty healthy natural dentate participants (men: 4; women: 16; age 20±2 years; mass: 60±12 kg, height: 163±7 cm) were selected from 316 volunteers and included in this study. Using a gnathodynamometer, bites from 20 to 100% maximum voluntary bite force (MVBF) were randomly requested. Using a two-dimensional grid (four columns, six electrodes) located on the dominant SM, EMGs in the anterior, middle-anterior, middle-posterior and posterior portions were simultaneously recorded. In bite ranges from 20 to 60% MVBF, the EMG activity was higher in the anterior than in the posterior portion (p-value = 0.001).The center of mass of the EMG activity was displaced towards the posterior part when bite force increased (p-value = 0.001). The topographic distribution of EMGs was more homogeneous at high levels of MVBF (p-value = 0.001). The results of this study show that the superficial masseter is organized into three functional compartments: an anterior, a middle and a posterior compartment. However, this compartmentalization is only seen at low levels of bite force (20–60% MVBF).  相似文献   

8.
We studied central motor commands, CMCs, coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm; the efforts were initiated according to a visual signal. Amplitudes of EMGs recorded from the muscles of the shoulder belt and shoulder and subjected to full-wave rectification and low-frequency filtration were considered correlates of the CMC intensity. An effort of the preset direction was developed within the operational space of the horizontal plane with angles 30 deg in the shoulder joint (external angle with respect to the frontal plane) and 90 deg in the elbow joint. We plotted sector diagrams of the logarithmic coefficient of the intensity increment of EMGs of the above muscles for the entire set of directions of generated efforts with a 15- or 20-deg step. Orientations of the maxima of EMG activity of the given muscles were rather close to the directions of the maxima of the force moments generated by these muscles. In most cases, a shift of the direction by one gradation with respect to the EMG maximum in the respective muscle resulted in a significant decrease in the level of EMG activity. It is shown that preferential activation of the muscles agonistic with respect to the examined direction of the generated effort was, as a rule, accompanied by coactivation of the antagonist muscles. When “two-joint” isometric efforts are formed, realization of the socalled synergic muscle tasks (where prevailing contractions of the muscles of the same functional direction for both joints coincide, i.e., flexion-flexion or extension-extension) is organized in a simpler manner. The programs of “nonsynergic” contractions (flexion of one joint and extension of another one, or vice versa) are more complex. In different subjects, considerably dissimilar patterns of EMG activity in muscles influencing these joints could be observed.  相似文献   

9.
We consider situations where the incomplete nature of the observed data causes identifiability problem. Rather than imposing identifiability constraints on the parameters and then implement the EM algorithm subject to these constraints, we argue that for certain problems, an easier option is to ignore the constraints during the M‐steps of the EM procedure. We also suggest a way of carrying out constrained maximization approximately by using Cox and Wermuth's (1990) method for approximating the constrained maximizers from the unconstrained ones at each M‐step. The simplicity and validity of the unconstrained EM procedure are demonstrated using three examples involving bivariate probit regression, multivariate normal order statistics model and the multinominal distribution. Potential applications to more complicated models are also outlined.  相似文献   

10.
Current electromyography (EMG)-driven musculoskeletal models are used to estimate joint moments measured from an individual?s extremities during dynamic movement with varying levels of accuracy. The main benefit is the underlying musculoskeletal dynamics is simulated as a function of realistic, subject-specific, neural-excitation patterns provided by the EMG data. The main disadvantage is surface EMG cannot provide information on deeply located muscles. Furthermore, EMG data may be affected by cross-talk, recording and post-processing artifacts that could adversely influence the EMG?s information content. This limits the EMG-driven model?s ability to calculate the multi-muscle dynamics and the resulting joint moments about multiple degrees of freedom. We present a hybrid neuromusculoskeletal model that combines calibration, subject-specificity, EMG-driven and static optimization methods together. In this, the joint moment tracking errors are minimized by balancing the information content extracted from the experimental EMG data and from that generated by a static optimization method. Using movement data from five healthy male subjects during walking and running we explored the hybrid model?s best configuration to minimally adjust recorded EMGs and predict missing EMGs while attaining the best tracking of joint moments. Minimally adjusted and predicted excitations substantially improved the experimental joint moment tracking accuracy than current EMG-driven models. The ability of the hybrid model to predict missing muscle EMGs was also examined. The proposed hybrid model enables muscle-driven simulations of human movement while enforcing physiological constraints on muscle excitation patterns. This might have important implications for studying pathological movement for which EMG recordings are limited.  相似文献   

11.
We examined the peculiarities of central coordination of motor commands coming to the muscles of the shoulder belt and shoulder in the course of generation of targeted isometric efforts by the arm. The dependence of these commands on changes in the effort direction and position of the forearm within the working space were analyzed. The intensity of the central commands was estimated according to the amplitudes of rectified and averaged EMGs recorded from the corresponding muscles. Sector diagrams of EMG activity of the above muscles depending on the direction of the effort vector, EV, were plotted [1]. Preferential sectors of activity where the efforts were formed due to activation of definite functional muscle groups were identified. As was found, the direction of these sectors depends significantly on the EV orientation. Differences between the patterns of coactivation of the examined muscles were demonstrated. Organization of the motor commands under conditions of creation of extensor efforts is distinguished by a more complex pattern than that related to flexor efforts. In the former case, the activity of extensor muscles is accompanied by more significant activation of the flexors.  相似文献   

12.
We studied coordination of central motor commands (CMCs) coming to the muscles that flex and extend the shoulder and elbow joints in the course of generation of voluntary isometric efforts of different directions by the forearm. Dependences of the characteristics of these commands on the direction of the effort and rate of its generation were analyzed. Amplitudes of rectified and averaged EMGs recorded from a number of shoulder belt and shoulder muscles were considered correlates of the CMC intensity. The development of the effort of a given direction and rate of rise was realized in the horizontal-plane operational space; the arm position corresponded to the 30 deg angle in the shoulder joint (external angle with respect to the frontal plane) and 90 deg angle in the elbow joint. We plotted sector diagrams of the relative changes in the level of dynamic and stationary phases of EMG activity of the studied muscles for the entire set of directions of the efforts generated with different rates of rise. In the course of formation of rapid two-joint isometric efforts, realization of nonsynergic motor tasks (extension of one joint and flexion of another one, and vice versa) required significant activation of muscles of different functional directions for both joints. Time organization of EMG activity of extensors and flexors of the shoulder and elbow joints related to the maximum and relatively rapid generation of the effort (rise time 0.12 to 0.13 and 0.25 sec, respectively) was rather complex and included dynamic and stationary phases. With these time parameters of generation of the efforts (both flexion and extension), the appearance at the stationary effort of 40 N was controlled based on coordinated interaction of dynamic phases of the activation of agonistic and antagonistic muscles. It is concluded that CMCs coming to extensors and flexors of both joints upon generation of rapid isometric efforts are rather similar in their parameters to those under conditions of realization of the forearm movements in the space in an isotonic mode.  相似文献   

13.
The inspiratory phase of coughs often consists of large inspired volumes and increased motor discharge to the costal diaphragm. Furthermore, diaphragm electrical activity may persist into the early expiratory portion of coughs. To examine the role of other inspiratory muscles during coughing, electromyograms (EMG) recorded from the crural diaphragm (Dcr) and parasternal intercostal (PSIC) muscles were compared to EMG of the costal diaphragm (Dco) in anesthetized cats. Tracheal or laryngeal stimulation typically produced a series of coughs, with variable increases in peak inspiratory EMGs of all three muscles. On average, peak inspiratory EMG of Dco increased to 346 +/- 60% of control (P less than 0.001), Dcr to 514 +/- 82% of control (P less than 0.0002), and PSIC to 574 +/- 61% of control (P less than 0.0005). Augmentations of Dcr and PSIC EMG were both significantly greater than of Dco EMG (P less than 0.05 and P less than 0.002, respectively). In most animals, EMG of Dco correlated significantly with EMG of Dcr and of PSIC during different size coughs. Electrical activity of all three muscles persisted into the expiratory portions of many (but not all) coughs. The duration of expiratory activity lasted on average 0.17 +/- 0.03 s for Dco, 0.25 +/- 0.06 s for Dcr, and 0.31 +/- 0.09 s for PSIC. These results suggest that multiple respiratory muscles are recruited during inspiration of coughs, and that the persistence of electrical activity into expiration of coughs is not unique to the costal diaphragm.  相似文献   

14.
The objective of this work was to increase our understanding of how motor patterns are produced during movement tasks by quantifying adaptations in muscle coordination in response to altered task mechanics. We used pedaling as our movement paradigm because it is a constrained cyclical movement that allows for a controlled investigation of test conditions such as movement speed and effort. Altered task mechanics were introduced using an elliptical chainring. The kinematics of the crank were changed from a relatively constant angular velocity using a circular chainring to a widely varying angular velocity using an elliptical chainring. Kinetic, kinematic and muscle activity data were collected from eight competitive cyclists using three different chainrings--one circular and two different orientations of an elliptical chainring. We tested the hypotheses that muscle coordination patterns (EMG timing and magnitude), specifically the regions of active muscle force production, would shift towards regions in the crank cycle in which the crank angular velocity, and hence muscle contraction speeds, were favorable to produce muscle power as defined by the skeletal muscle power-velocity relationship. The results showed that our hypothesis with regards to timing was not supported. Although there were statistically significant shifts in muscle timing, the shifts were minor in absolute terms and appeared to be the result of the muscles accounting for the activation dynamics associated with muscle force development (i.e. the delay in muscle force rise and decay). But, significant changes in the magnitude of muscle EMG during regions of slow crank angular velocity for the tibialis anterior and rectus femoris were observed. Thus, the nervous system used adaptations to the muscle EMG magnitude, rather than the timing, to adapt to the altered task mechanics. The results also suggested that cyclists might work on the descending limb of the power-velocity relationship when pedaling at 90 rpm and sub-maximal power output. This finding might have important implications for preferred pedaling rate selection.  相似文献   

15.
In this paper, we have developed a novel and simple method to quantify the ability to selectively activate our muscles in an effective pattern to achieve a particular task. In the context of this study, we define an effective pattern as that in which muscles whose mechanical contribution to the task is greatest, are mostly active, while the antagonist muscles are mostly silent. This new method uses biomechanical parameters to project the multi-channel EMGs into a three-dimensional artificial torque space, where the EMGs are represented as muscle activation vectors. Using the muscle activation vectors we defined a simple scalar, the muscle selection index, to quantify muscle selectivity. We demonstrate that by using this index we are able to quantify the muscle selectivity during the generation of isometric shoulder or elbow torques in brain-injured and able-bodied subjects. This method can be used during both static and dynamic motor tasks in a multi-articular musculoskeletal system.  相似文献   

16.
The purpose of this study was to develop a wavelet-based method to predict muscle forces from surface electromyography (EMG) signals in vivo.The weightlifting motor task was implemented as the case study.EMG signals of biceps brachii,triceps brachii and deltoid muscles were recorded when the subject carried out a standard weightlifting motor task.The wavelet-based algorithm was used to process raw EMG signals and extract features which could be input to the Hill-type muscle force models to predict muscle forces.At the same time,the musculoskeletal model of subject's weightlifting motor task was built and simulated using the Computed Muscle Control (CMC) method via a motion capture experiment.The results of CMC were compared with the muscle force predictions by the proposed method.The correlation coefficient between two results was 0.99(p<0.01).However,the proposed method was easier and more efficiency than the CMC method.It has potential to be used clinically to predict muscle forces in vivo.  相似文献   

17.
Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance.  相似文献   

18.
The habitual activity patterns of trapezius and postural back muscles (multifidus, iliocostalis, longissimus) of 23 female subjects with moderate physical activity were studied. Bilateral surface electromyographic (sEMG) recordings from start of work until bedtime were analyzed. The activity level was calibrated as percentage of root mean square-detected muscle activity at maximal voluntary contraction (EMG(max)). Sixty-six previous trapezius recordings of women with moderate physical activity were included in some analyses to pursue the full range of variation in trapezius activity. Twenty-six of these were recorded twice, separated by 16-28 mo. Median activity level and duration of periods with sEMG activity of <0.5% EMG(max) ("rest time"; only trapezius) and exceeding 2 ("burst time"), 10, 30, and 50% EMG(max) was determined. The trapezius median activity level ranged from 0.6 to 8.8% EMG(max), burst time from 9 to 84%, and rest time from 2 to 84%. The activity patterns of the back muscles showed similar large interindividual variation. Repeated trapezius recordings of the same subject showed high consistency; intraclass correlation coefficients ranged from 0.62 to 0.79 for different sEMG variables. Periods with high sEMG amplitude were of short duration; 7% of the trapezius recordings did not present time intervals (0.2-s duration) above 50% EMG(max). The activity patterns of the postural muscles, despite large interindividual variability, were distinctly different from activity patterns of upper and lower limb muscles reported by others (e.g., mean burst time 40-50 vs. 10-20%). We conclude that postural trunk muscles show idiosyncratic activity patterns with large interindividual variation. High-threshold motor units are activated to a very minor extent.  相似文献   

19.
In the rat, a species widely used to study the neural mechanisms of sleep and motor control, lingual electromyographic activity (EMG) is minimal during non-rapid eye movement (non-REM) sleep and then phasic twitches gradually increase after the onset of REM sleep. To better characterize the central neural processes underlying this pattern, we quantified EMG of muscles innervated by distinct subpopulations of hypoglossal motoneurons and nuchal (N) EMG during transitions from non-REM sleep to REM sleep. In 8 chronically instrumented rats, we recorded cortical EEG, EMG at sites near the base of the tongue where genioglossal and intrinsic muscle fibers predominate (GG-I), EMG of the geniohyoid (GH) muscle, and N EMG. Sleep-wake states were identified and EMGs quantified relative to their mean levels in wakefulness in successive 10 s epochs. During non-REM sleep, the average EMG levels differed among the three muscles, with the order being N>GH>GG-I. During REM sleep, due to different magnitudes of phasic twitches, the order was reversed to GG-I>GH>N. GG-I and GH exhibited a gradual increase of twitching that peaked at 70-120 s after the onset of REM sleep and then declined if the REM sleep episode lasted longer. We propose that a common phasic excitatory generator impinges on motoneuron pools that innervate different muscles, but twitching magnitudes are different due to different levels of tonic motoneuronal hyperpolarization. We also propose that REM sleep episodes of average durations are terminated by intense activity of the central generator of phasic events, whereas long REM sleep episodes end as a result of a gradual waning of the tonic disfacilitatory and inhibitory processes.  相似文献   

20.

Background

The human motor system is highly redundant, having more kinematic degrees of freedom than necessary to complete a given task. Understanding how kinematic redundancies are utilized in different tasks remains a fundamental question in motor control. One possibility is that they can be used to tune the mechanical properties of a limb to the specific requirements of a task. For example, many tasks such as tool usage compromise arm stability along specific directions. These tasks only can be completed if the nervous system adapts the mechanical properties of the arm such that the arm, coupled to the tool, remains stable. The purpose of this study was to determine if posture selection is a critical component of endpoint stiffness regulation during unconstrained tasks.

Methodology/Principal Findings

Three-dimensional (3D) estimates of endpoint stiffness were used to quantify limb mechanics. Most previous studies examining endpoint stiffness adaptation were completed in 2D using constrained postures to maintain a non-redundant mapping between joint angles and hand location. Our hypothesis was that during unconstrained conditions, subjects would select arm postures that matched endpoint stiffness to the functional requirements of the task. The hypothesis was tested during endpoint tracking tasks in which subjects interacted with unstable haptic environments, simulated using a 3D robotic manipulator. We found that arm posture had a significant effect on endpoint tracking accuracy and that subjects selected postures that improved tracking performance. For environments in which arm posture had a large effect on tracking accuracy, the self-selected postures oriented the direction of maximal endpoint stiffness towards the direction of the unstable haptic environment.

Conclusions/Significance

These results demonstrate how changes in arm posture can have a dramatic effect on task performance and suggest that postural selection is a fundamental mechanism by which kinematic redundancies can be exploited to regulate arm stiffness in unconstrained tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号