共查询到20条相似文献,搜索用时 0 毫秒
1.
Given a particular membrane protein, it is very important to know which membrane type it belongs to because this kind of information
can provide clues for better understanding its function. In this work, we propose a system for predicting the membrane protein
type directly from the amino acid sequence. The feature extraction step is based on an encoding technique that combines the
physicochemical amino acid properties with the residue couple model. The residue couple model is a method inspired by Chou’s
quasi-sequence-order model that extracts the features by utilizing the sequence order effect indirectly. A set of support
vector machines, each trained using a different physicochemical amino acid property combined with the residue couple model,
are combined by vote rule. The success rate obtained by our system on a difficult dataset, where the sequences in a given
membrane type have a low sequence identity to any other proteins of the same membrane type, are quite high, indicating that
the proposed method, where the features are extracted directly from the amino acid sequence, is a feasible system for predicting
the membrane protein type. 相似文献
2.
3.
Secondary structure prediction with support vector machines 总被引:8,自引:0,他引:8
MOTIVATION: A new method that uses support vector machines (SVMs) to predict protein secondary structure is described and evaluated. The study is designed to develop a reliable prediction method using an alternative technique and to investigate the applicability of SVMs to this type of bioinformatics problem. METHODS: Binary SVMs are trained to discriminate between two structural classes. The binary classifiers are combined in several ways to predict multi-class secondary structure. RESULTS: The average three-state prediction accuracy per protein (Q(3)) is estimated by cross-validation to be 77.07 +/- 0.26% with a segment overlap (Sov) score of 73.32 +/- 0.39%. The SVM performs similarly to the 'state-of-the-art' PSIPRED prediction method on a non-homologous test set of 121 proteins despite being trained on substantially fewer examples. A simple consensus of the SVM, PSIPRED and PROFsec achieves significantly higher prediction accuracy than the individual methods. 相似文献
4.
Modelling ecological niches with support vector machines 总被引:2,自引:1,他引:2
5.
复杂疾病驱使的融合SDA-SVM集成基因挖掘方法 总被引:1,自引:0,他引:1
提出了一种新颖的复杂疾病驱使的融合SDA-SVM(Stepwise Discriminant Analysis-Support Vector Machine,SDA-SVM)技术的集成基因挖掘方法。该集成方法融合逐步判别分析和支持向量机的优点,能够有效地进行复杂疾病相关基因的深度挖掘,使得挖掘出的基因能够较好地识别疾病类型和亚型。通过将该方法应用于一套弥散性大B细胞淋巴瘤DNA表达谱数据,并与其它基因挖掘方法对比,结果表明该方法挖掘出的基因具有较高的疾病相关性和较强的疾病类型识别能力。 相似文献
6.
MOTIVATION: The enormous amount of protein sequence data uncovered by genome research has increased the demand for computer software that can automate the recognition of new proteins. We discuss the relative merits of various automated methods for recognizing G-Protein Coupled Receptors (GPCRs), a superfamily of cell membrane proteins. GPCRs are found in a wide range of organisms and are central to a cellular signalling network that regulates many basic physiological processes. They are the focus of a significant amount of current pharmaceutical research because they play a key role in many diseases. However, their tertiary structures remain largely unsolved. The methods described in this paper use only primary sequence information to make their predictions. We compare a simple nearest neighbor approach (BLAST), methods based on multiple alignments generated by a statistical profile Hidden Markov Model (HMM), and methods, including Support Vector Machines (SVMs), that transform protein sequences into fixed-length feature vectors. RESULTS: The last is the most computationally expensive method, but our experiments show that, for those interested in annotation-quality classification, the results are worth the effort. In two-fold cross-validation experiments testing recognition of GPCR subfamilies that bind a specific ligand (such as a histamine molecule), the errors per sequence at the Minimum Error Point (MEP) were 13.7% for multi-class SVMs, 17.1% for our SVMtree method of hierarchical multi-class SVM classification, 25.5% for BLAST, 30% for profile HMMs, and 49% for classification based on nearest neighbor feature vector Kernel Nearest Neighbor (kernNN). The percentage of true positives recognized before the first false positive was 65% for both SVM methods, 13% for BLAST, 5% for profile HMMs and 4% for kernNN. 相似文献
7.
8.
9.
MOTIVATION: With the development of DNA microarray technology, scientists can now measure the expression levels of thousands of genes simultaneously in one single experiment. One current difficulty in interpreting microarray data comes from their innate nature of 'high-dimensional low sample size'. Therefore, robust and accurate gene selection methods are required to identify differentially expressed group of genes across different samples, e.g. between cancerous and normal cells. Successful gene selection will help to classify different cancer types, lead to a better understanding of genetic signatures in cancers and improve treatment strategies. Although gene selection and cancer classification are two closely related problems, most existing approaches handle them separately by selecting genes prior to classification. We provide a unified procedure for simultaneous gene selection and cancer classification, achieving high accuracy in both aspects. RESULTS: In this paper we develop a novel type of regularization in support vector machines (SVMs) to identify important genes for cancer classification. A special nonconvex penalty, called the smoothly clipped absolute deviation penalty, is imposed on the hinge loss function in the SVM. By systematically thresholding small estimates to zeros, the new procedure eliminates redundant genes automatically and yields a compact and accurate classifier. A successive quadratic algorithm is proposed to convert the non-differentiable and non-convex optimization problem into easily solved linear equation systems. The method is applied to two real datasets and has produced very promising results. AVAILABILITY: MATLAB codes are available upon request from the authors. 相似文献
10.
11.
Predicting a particular cognitive state from a specific pattern of fMRI voxel values is still a methodological challenge. Decoding brain activity is usually performed in highly controlled experimental paradigms characterized by a series of distinct states induced by a temporally constrained experimental design. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. This study tests the classification of brain activity, acquired on 16 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. To deal with these issues, two classification techniques were considered (Support Vector Machines, SVM, and Gaussian Processes, GP), as well as different feature extraction methods (General Linear Model, GLM and SVM). These techniques were combined in order to identify the procedures leading to the highest accuracy measures. Our results showed that 12 data sets out of 16 could be significantly modeled by either SVM or GP. Model accuracies tended to be related to the degree of imbalance between classes and to task performance of the volunteers. We also conclude that the GP technique tends to be more robust than SVM to model unbalanced data sets. 相似文献
12.
Joshua Heinemann Aurélien Mazurie Monika Tokmina-Lukaszewska Greg J. Beilman Brian Bothner 《Metabolomics : Official journal of the Metabolomic Society》2014,10(6):1121-1128
Identifying biomarkers that are indicative of a phenotypic state is difficult because of the amount of natural variability which exists in any population. While there are many different algorithms to select biomarkers, previous investigation shows the sensitivity and flexibility of support vector machines (SVM) make them an attractive candidate. Here we evaluate the ability of support vector machine recursive feature elimination (SVM-RFE) to identify potential metabolic biomarkers in liquid chromatography mass spectrometry untargeted metabolite datasets. Two separate experiments are considered, a low variance (low biological noise) prokaryotic stress experiment, and a high variance (high biological noise) mammalian stress experiment. For each experiment, the phenotypic response to stress is metabolically characterized. SVM-based classification and metabolite ranking is undertaken using a systematically reduced number of biological replicates to evaluate the impact of sample size on biomarker reproducibility and robustness. Our results indicate the highest ranked 1 % of metabolites, the most predictive of the physiological state, were identified by SVM-RFE even when the number of training examples was small (≥3) and the coefficient of variation was high (>0.5). An accuracy analysis shows filtering with recursive feature elimination measurably improves SVM classification accuracy, an effect that is pronounced when the number of training examples is small. These results indicate that SVM-RFE can be successful at biomarker identification even in challenging scenarios where the training examples are noisy and the number of biological replicates is low. 相似文献
13.
Microarray gene expression data usually have a large number of dimensions, e.g., over ten thousand genes, and a small number of samples, e.g., a few tens of patients. In this paper, we use the support vector machine (SVM) for cancer classification with microarray data. Dimensionality reduction methods, such as principal components analysis (PCA), class-separability measure, Fisher ratio, and t-test, are used for gene selection. A voting scheme is then employed to do multi-group classification by k(k - 1) binary SVMs. We are able to obtain the same classification accuracy but with much fewer features compared to other published results. 相似文献
14.
Murtada Khalafallah Elbashir Jianxin Wang Fang-Xiang Wu Lusheng Wang 《Proteome science》2013,11(Z1):S5
Background
β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design.Results
We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features.Conclusions
In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.15.
Sanders WS Johnston CI Bridges SM Burgess SC Willeford KO 《PLoS computational biology》2011,7(7):e1002101
Cell penetrating peptides (CPPs) are those peptides that can transverse cell membranes to enter cells. Once inside the cell, different CPPs can localize to different cellular components and perform different roles. Some generate pore-forming complexes resulting in the destruction of cells while others localize to various organelles. Use of machine learning methods to predict potential new CPPs will enable more rapid screening for applications such as drug delivery. We have investigated the influence of the composition of training datasets on the ability to classify peptides as cell penetrating using support vector machines (SVMs). We identified 111 known CPPs and 34 known non-penetrating peptides from the literature and commercial vendors and used several approaches to build training data sets for the classifiers. Features were calculated from the datasets using a set of basic biochemical properties combined with features from the literature determined to be relevant in the prediction of CPPs. Our results using different training datasets confirm the importance of a balanced training set with approximately equal number of positive and negative examples. The SVM based classifiers have greater classification accuracy than previously reported methods for the prediction of CPPs, and because they use primary biochemical properties of the peptides as features, these classifiers provide insight into the properties needed for cell-penetration. To confirm our SVM classifications, a subset of peptides classified as either penetrating or non-penetrating was selected for synthesis and experimental validation. Of the synthesized peptides predicted to be CPPs, 100% of these peptides were shown to be penetrating. 相似文献
16.
MOTIVATION: The T-cell receptor, a major histocompatibility complex (MHC) molecule, and a bound antigenic peptide, play major roles in the process of antigen-specific T-cell activation. T-cell recognition was long considered exquisitely specific. Recent data also indicate that it is highly flexible, and one receptor may recognize thousands of different peptides. Deciphering the patterns of peptides that elicit a MHC restricted T-cell response is critical for vaccine development. RESULTS: For the first time we develop a support vector machine (SVM) for T-cell epitope prediction with an MHC type I restricted T-cell clone. Using cross-validation, we demonstrate that SVMs can be trained on relatively small data sets to provide prediction more accurate than those based on previously published methods or on MHC binding. SUPPLEMENTARY INFORMATION: Data for 203 synthesized peptides is available at http://linus.nci.nih.gov/Data/LAU203_Peptide.pdf 相似文献
17.
Summary. The support vector machine, a machine-learning method, is used to predict the four structural classes, i.e. mainly α, mainly
β, α–β and fss, from the topology-level of CATH protein structure database. For the binary classification, any two structural
classes which do not share any secondary structure such as α and β elements could be classified with as high as 90% accuracy.
The accuracy, however, will decrease to less than 70% if the structural classes to be classified contain structure elements
in common. Our study also shows that the dimensions of feature space 202 = 400 (for dipeptide) and 203 = 8 000 (for tripeptide) give nearly the same prediction accuracy. Among these 4 structural classes, multi-class classification
gives an overall accuracy of about 52%, indicating that the multi-class classification technique in support of vector machines
may still need to be further improved in future investigation. 相似文献
18.
Jahandideh S Sarvestani AS Abdolmaleki P Jahandideh M Barfeie M 《Journal of theoretical biology》2007,249(4):785-790
Recently, two different models have been developed for predicting gamma-turns in proteins by Kaur and Raghava [2002. An evaluation of beta-turn prediction methods. Bioinformatics 18, 1508-1514; 2003. A neural-network based method for prediction of gamma-turns in proteins from multiple sequence alignment. Protein Sci. 12, 923-929]. However, the major limitation of previous methods is inability in predicting gamma-turns types. Thus, there is a need to predict gamma-turn types using an approach which will be useful in overall tertiary structure prediction. In this work, support vector machines (SVMs), a powerful model is proposed for predicting gamma-turn types in proteins. The high rates of prediction accuracy showed that the formation of gamma-turn types is evidently correlated with the sequence of tripeptides, and hence can be approximately predicted based on the sequence information of the tripeptides alone. 相似文献
19.
20.
This paper presents a composite multi-layer classifier system for predicting the subcellular localization of proteins based on their amino acid sequence. The work is an extension of our previous predictor PProwler v1.1 which is itself built upon the series of predictors SignalP and TargetP. In this study we outline experiments conducted to improve the classifier design. The major improvement came from using Support Vector machines as a smart gate sorting the outputs of several different targeting peptide detection networks. Our final model (PProwler v1.2) gives MCC values of 0.873 for non-plant and 0.849 for plant proteins. The model improves upon the accuracy of our previous subcellular localization predictor (PProwler v1.1) by 2% for plant data (which represents 7.5% improvement upon TargetP). 相似文献