首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the 'F' horizons of acid mor-humus soils of heathland ecosystems, mycorrhizal roots of the dominant ericaceous species form a large fraction of the soil biomass. Rapid turnover of these roots provides the potential for recycling of substantial amounts of nitrogen contained in their fungal and plant components. Here, we first determine the amount of N in the biomass of ericoid roots growing in heathland and show it to constitute a large proportion of total soil N. In order to assess the accessibility of this N to ericaceous plants, experiments were then conducted using aseptically produced shoot and root necromass of Vaccinium macrocarpon Ait., the roots being grown with or without mycorrhizal colonization. These materials were provided as sole nitrogenous substrates in growth experiments using the ericoid mycorrhizal fungus Hymenoscyphus ericae (Read) Korf & Kernan in pure culture and V. macrocarpon in the mycorrhizal (M) or non-mycorrhizal (NM) condition as test organisms. The experiments were designed to test the hypothesis that the N contained in these substrates can be mobilized by the mycorrhizal endophyte. The ability of the endophyte to utilize the substrates was determined by measuring fungal yields and by assessing the presence of its extra-cellular protease and chitinase enzymes. Transfer of N to the host by the endophyte was determined through measurements of plant yield and tissue N contents. H. ericae produced a significantly greater yield on shoot and mycorrhizal root necromass than on non-mycorrhizal root necromass. The extra-cellular enzymes protease and chitinase were produced by the fungus when grown on the M root necromass. The fungus also transferred N to the host plant, up to 76% of N contained in the substrate being found in M plants whereas less than 5% was present in their NM counterparts.  相似文献   

2.
Fungal succession in rotting wood shows a surprising abundance of ectomycorrhizal (EM) fungi during the late decomposition stages. To better understand the links between EM fungi and saprotrophic fungi, we investigated the potential capacities of the EM fungus Paxillus involutus to mobilize nutrients from necromass of Postia placenta, a wood rot fungus, and to transfer these elements to its host tree. In this aim, we used pure cultures of P. involutus in the presence of labelled Postia necromass (15N/13C) as nutrient source, and a monoxenic mycorrhized pine experiment composed of labelled Postia necromass and P. involutus culture in interaction with pine seedlings. The isotopic labelling was measured in both experiments. In pure culture, P. involutus was able to mobilize N, but C as well, from the Postia necromass. In the symbiotic interaction experiment, we measured high 15N enrichments in all plant and fungal compartments. Interestingly, 13C remains mainly in the mycelium and mycorrhizas, demonstrating that the EM fungus transferred essentially N from the necromass to the tree. These observations reveal that fungal organic matter could represent a significant N source for EM fungi and trees, but also a C source for mycorrhizal fungi, including in symbiotic lifestyle.  相似文献   

3.
植物主要依赖自身根系从土壤中获取矿质养分; 具有不同根形态的植物对于养分的吸收能力存在差异。丛枝菌根真菌(AMF)能与陆地植物根系形成共生关系, 帮助植物吸收矿质养分。但是, AMF对于植物根系养分吸收的促进效应是否会受根形态的影响还鲜有研究。该研究选取4种不同根形态基因型水稻(根毛缺陷突变体rhl1、侧根缺陷突变体iaa11、不定根缺失突变体arl1和野生型Kas)为研究对象, 设置2种施氮水平处理(低氮: 20 mg·kg-1氨氮; 高氮: 100 mg·kg-1氨氮), 利用稳定同位素15N示踪标记技术, 探究AMF和氮添加对不同根形态植物氮吸收的影响。研究结果发现, 相比低氮处理, 高氮处理下, rhl1、Kas、iaa11arl1的茎叶15N浓度分别提高了60%、72%、128%与118%, 说明氮添加显著促进了水稻氮吸收, 且iaa11arl1对氮添加的响应更强烈。在低氮水平下, AMF对rhl1、Kas、iaa11arl1氮吸收的平均效应值分别为17%、31%、42%、51%, 表明AMF对于植物氮吸收的促进效应受根形态影响, iaa11arl1对AMF的响应明显高于Kas与rhl1; 相较于低氮水平, 高氮水平下AMF对于不同根形态水稻氮吸收的促进效应都会显著降低, 表明氮添加削弱了AMF对植物氮吸收的促进效应。该研究阐明了4种不同根形态基因型水稻氮养分吸收存在显著差异, 其中氮吸收能力较弱的基因型水稻对AMF的响应更强, 该结果补充了植物与AMF在养分吸收上存在功能互补的控制实验证据。  相似文献   

4.
Arbuscular mycorrhizae (AM) fungi affect nutrient uptake for host plants, while it is unclear how AM fungi interacting with soil litter affect plant growth and nutrient utilization through mycorrhizal networks in karst soil of deficient nutrients beyond the rhizosphere. An experiment was conducted in a microcosm composed of a planting compartment for Cinnamomum camphora seedlings with or without Glomus mosseae fungus (M+ vs. M ) and an adjacent litter compartment containing or not containing additional litter material of Arthraxon hispidus (L+ vs. L ), where the compartments are connected either by nylon mesh of 20 μm or 0.45 μm which either allow available mycorrhizal networks within the litter compartment or prevent mycelium entering into the litter compartment (N+ vs. N ). Plant biomass and nutrients were measured. The results showed that the addition of litter changed the symbiotic process in mycorrhizal colonization, spore, and hyphal density, which when in association with the host plant then affected the biomass, and accumulations of N (nitrogen) and P (phosphorus) in the individual plant as well as root, stem, and leaf respectively. AM fungi increased N and P accumulations and N/P ratio in individual plants and plant tissues. A decrease of the N/P ratio of the individual plant was observed when AM fungus interacted significantly with litter through mycorrhizal networks in the litter compartment. The results indicate that the C. camphora seedlings benefited from litter in nutrient utilization of N and P through the vary of N/P ratio when accessing mycorrhizal networks. These findings suggest that mycorrhizal networks interacting with litter improve growth and nutrients of N and P for plants through the vary of N/P ratio in order to alleviate nutrient limitation under karst soil.  相似文献   

5.
6.
 Plants of Helianthemum almeriense were micropropagated on MS medium and inoculated in vitro with Terfezia claveryi mycelium on MH medium and vermiculite. Mycorrhizal (M) and non-mycorrhizal (NM) plants were subjected to a drought stress period of 3 weeks in greenhouse conditions with the soil matric potential maintained at –0.5 MPa. Drought stress did not affect the amount of mycorrhizal colonization. The survival rate of M plants at the end of the drought stress period was higher than that of NM plants. The water potential was higher in M plants than in NM plants by 14% in well-watered and 26% in drought-stressed plants. Transpiration, stomatal conductance and net photosynthesis were higher in M plants than in NM plants. Transpiration was 92% higher in M plants than in NM plants under drought-stress conditions and 40% when irrigated. Stomatal conductance was 45% and 14% higher and net photosynthesis 88% and 54% higher, respectively, in M than in NM plants. Drought-stressed M plants accumulated more N, P and K than drought-stressed NM plants. Reduced negative effects of drought stress on H. almeriense by the desert truffle T. claveryi could be ascribed to specific physiological and nutritional mechanisms, suggesting that this mycorrhizal symbiosis aids adaptation to arid climates. Accepted: 7 July 2000  相似文献   

7.
Growing ectomycorrhizal (ECM) plants in hydroponics is not common and probably not desirable, especially with fungal partners producing hydrophobic mycelia. The addition of a solid substrate with low buffering capacity to the cultivation system permitted growth of ECM Pinus sylvestris seedlings in a more root- and fungus-like environment. In such semihydroponic cultivation systems, both hydrophilic ( Thelephora terrestris ) and hydrophobic ( Suillus luteus ) fungi can grow well, provided the substrate is not continuously flooded. In the present investigation, P. sylvestris seedlings were grown at two suboptimal P addition rates. Mycorrhizal seedlings had significantly lower P contents in aboveground and higher P contents in belowground plant parts than non-mycorrhizal (NM) pines. When mycorrhizal plants are grown under steady-state conditions, the controlled addition of nutrients according to the Ingestad concept (Ingestad and Ågren 1995) does not take into account the nutrient requirements of the associated mycobiont. Therefore, the retention of nutrients in the mycelia can result in a decreased growth of mycorrhizal plants when compared to NM controls. Under steady-state conditions, plant and fungal development both reach an equilibrium sustained by feedback mechanisms in the allocation patterns. The maximal growth rate of different mycobionts does not necessarily occur at the nutrient addition rate resulting in maximal growth rate of a host plant. Ergosterol concentrations in roots and in growth substrate indicate that S. luteus grew more vigorously at the lower than at the higher rate of P addition.  相似文献   

8.
Mycorrhizal benefit to plants is most frequently evaluated through growth differences between mycorrhizal (M) and non‐mycorrhizal (NM) plants. These growth differences are often considered to be due to differences in belowground C expenditure, or in cost efficiency, i.e. amount of nutrients acquired per C expended. We searched published reports for relations between plant growth and belowground C allocation, C use efficiency, or nutrient uptake, in ectomycorrhizal (ECM) versus non‐mycorrhizal plants. We found a similar number of cases of negative, null or positive effects of ECM on plant growth. These effects were not correlated with differences on belowground C allocation or C use efficiency between M and NM plants. In contrast, they were very strongly correlated with mycorrhizal effects on plant N gain. A comprehensive analysis of the published data therefore provided evidence that C is an excess, rather than a costly, resource, and that the outcome of the symbiosis depends only on whether mycorrhizae result in increased or decreased nutrient acquisition compared with NM plants, and not on cost efficiency differences between M and NM plants. Consequences of this finding for the regulation of resource exchange between symbionts and the nature of the symbiosis are discussed.  相似文献   

9.
Abstract. The objective of this study was to determine how mycorrhizal infection of one generation of plants influences the nutrient dynamics of seeds and seedlings comprising the subsequent generation. We showed that, for Avena fatua L., seeds produced by mycorrhizal (M) plants consistently contained significantly more phosphorus (particularly the phytate P and residual P fractions) than seeds produced by non-mycorrhizal (NM) plants. We also followed the development of spikelets produced by M and NM plants. The rates of increase in spikelet dry weight and nitrogen content were largely unaffected by mycorrhizal infection. However, the rate of P accumulation into spikelets was significantly increased by mycorrhizal infection. Greater endosperm P reserves in seeds produced by M plants were associated with greater rates of P accumulation in resultant seedlings. Moreover, offspring plants (all NM) produced by M mother plants had significantly higher root and rhizosphere phosphatase, ATPase and phytase activities than offspring plants produced by NM mother plants. This persistent maternal effect has never before been described. Our results suggest that mycorrhizal infection of one generation of plants may have substantial positive effects on the offspring generation, and thus, may influence plant population dynamics.  相似文献   

10.
菌根真菌与植物共生营养交换机制研究进展   总被引:4,自引:0,他引:4  
菌根是陆地生态系统普遍存在的、由土壤中的菌根真菌侵染宿主植物根系形成的联合共生体.菌根的建立是以共生体双方的营养交换为基础的:菌根真菌从土壤中吸收氮、磷等营养物质并转运给宿主植物,供其生长;作为交换,植物则以脂质或糖的形式向菌根真菌提供其生长所必需的碳水化合物.近年来,菌根真菌与宿主植物间的营养交换机制一直是研究的热点,国内外对菌根真菌介导的植物营养物质吸收和转运机制的研究也取得了巨大进展.本文综述了丛枝和外生两种菌根真菌与宿主植物间营养交换的最新研究进展,尤其是碳、氮、磷等几种重要营养物质的吸收与双向转运机制,以及营养交换在菌根形成中的潜在调控作用,并对目前存在的关键问题和未来研究方向进行了分析和展望,这对菌根模型的建立及菌根效益的优化具有重要意义.  相似文献   

11.
12.
Sorghum (Sorghum bicolor (L.) Moench cv. Bok 8) plants were inoculated with either the vesicular-arbuscular mycorrhizal (VAM) fungusGlomus fasciculatum, with a strain ofAzospirillum brasilense, or with both endophytes together. Non-inoculated plants were fertilized with quantities of N and P that had been found to compensate for the input of nutrients following azospirillum or glomus colonization. Total plant dry weight in all treatments was statistically indistinguishable at harvest (10 weeks). In general, plants colonized by Glomus contained less P, Mn, starch and sucrose, but more Cu, Zn and proline than P-fertilized plants. Azospirillum-inoculated sorghum contained less N, glucose, threonine and glutamine, but more Fe and glutamate than N-amended plants. Mycorrhizal roots contained five specific fatty acids not found in non-VAM plants. Inoculated plants displayed altered nutrient requirements, membrane composition and metabolite levels, indicating that colonization by these endophytes influenced host physiology, even under conditions where N or P input was negligible.Contribution from the Western Regional Research Center, USDA-ARS (CRIS No. 5325-41000-008).  相似文献   

13.
Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake. Florida Agricultural Experimental Station Journal Series No. 7773.  相似文献   

14.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

15.
Salt stress is considered as one of the most important abiotic factors limiting plant growth and yield in many areas of the world. It has been shown that Vesicular Arbuscular Mycorrhizal Fungi (AMF) can alleviate this deficiency. The effects of AMF inoculation on growth variables and mineral nutrition of Carthamus tinctorius L. under salt stress condition were studied. Plants were grown in a sterilized, low-P sandy soil with Glomus etunicatum inoculum (10–12 spore/g soil) in a greenhouse. RLC (Root Length Colonized) percent was higher in control plants than treated ones with different salt concentrations. Shoot and root weights, height, the number of leaves, the number of lateral branches, and also leaf area of mycorrhizal (M) plants were higher than nonmycorrhizal (NM) ones in both controlled and salt-treated plants. P, Zn, Fe, Ca, K, Cu, and N contents in M plants were higher than in NM plants in control, low and medium salinity conditions, but Na content was lower in aerial parts of the M plants. The results showed a higher tolerance of inoculated M plants toward salt stress and their better growth.  相似文献   

16.
The growth response of Hevea brasiliensis to vesicular-arbuscular mycorrhizal (VAM) fungi inoculation was assessed in two field nursery sites containing indigenous mycorrhizal fungi (IMF). Seedling rootstocks were inoculated with mixed VAM-fungal species in a factorial combination with phosphorus (P) fertilizer application, and planted in randomised blocks on sandy (site 1) and clayey (site 2) soils. Plants were harvested after 26 weeks for measurements of shoot dry weight (DW), stem diameter, height, mycorrhizal root colonization and leaf nutrient contents. At site 1, VAM increased shoot DW, stem diameter and plant height only in treatments without P applied. Increases in shoot DW due to VAM were 70% greater than the uninoculated controls although this was reduced to 5% when P was applied. At site 2, VAM inoculation also increased shoot DW and stem diameter but the magnitude of the increases was smaller. Shoot DW response due to VAM was only 29%. At this second site, applying phosphate to uninoculated plants did not increase shoot yields further. Leaf concentrations of all nutrients were unaffected by VAM at both sites, except for copper (Cu) which was increased by VAM in treatments where P was not applied. However, leaf contents of P, potassium (K), magnesium (Mg) and Cu were increased by VAM at site 1, and of leaf nitrogen (N) and K at site 2. These experiments demonstrate that VAM-fungi could be introduced into field nursery sites to improve growth and P uptake by H. brasiliensis. The relevance of VAM-fungi to H. brasiliensis seedling rootstock development and the influence of IMF in determining field responses is discussed.  相似文献   

17.
兰科植物是典型的菌根植物。兰菌根是兰科植物根与真菌形成的菌根共生体。兰菌根真菌的营养来源影响宿主植物的生活方式和营养水平。氮是植物生长的主要限制因子。兰科植物具有富集氮的特征, 其组织和器官的氮含量通常高于同生境中的其他植物。该文综述了兰菌根真菌类别、兰科植物氮营养特征和兰菌根的氮转移机制等的研究进展, 以期为兰科植物资源的保护、再生及可持续利用的相关研究提供参考和借鉴。  相似文献   

18.
A greenhouse pot experiment with different phosphorus supply was conducted to study growth, photosynthesis and free polyamine (PA) content in Plantago lanceolata L. plants in relation to arbuscular mycorrhizal (AM) colonization. Inoculum of Glomus fasciculatum (BEG 53) was used. Inoculated plants had high colonization intensities which were related to the P supply. Non-mycorrhizal (NM) plants showed a typical yield response curve for P availability. Dry masses of mycorrhizal (M) plants were higher at the lowest soil P content than those of NM plants, but the opposite was found at the highest P supply. P contents in M plants were always higher. There were no differences in chlorophyll (Chl) concentrations (except the lowest soil P content) and ratios of variable to maximum Chl fluorescence (Fv/Fm) values between M and NM plants, whereas M plants had higher ratios of leaf area to fresh mass (A/f.m.) at low soil P contents and they had significantly higher CO2 fixation capacities per unit leaf area. Free putrescine (Put), spermidine (Spd) and spermine (Spm) contents in NM plants were usually highest at the lowest P supply. The ratios of Put/(Spd+Spm) were identical in M and NM leaves. They were significantly higher, however, in NM roots at the two low P doses. It is concluded, that a P nutritional status might exist, below which PA concentrations and ratio are increased drastically, possibly indicating P deficiency or a certain state of plant development with a higher demand for AM symbiosis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Measuring the influence of mycorrhizas   总被引:1,自引:0,他引:1  
'The view that nutrient acquisition by most plants growing in natural ecosystems is mediated by mycorrhiza-forming symbiotic fungi is now largely accepted' (Read, 2000). Is this bold claim really true for the whole suite of mineral nutrients that plants require? The case is strongest for nutrients that are not very mobile in soil, especially when present in growth-limiting amounts, and phosphate (P) is the classic example. Arbuscular mycorrhizas are by far the most widespread mycorrhizal symbioses, and the ability of arbuscular mycorrhizal (AM) fungi to take up soil nutrients such as P and transfer them to the host plant is an area of intense research. However, there is great variation in the extent to which AM plants benefit in measurable terms from the symbiosis under a given set of environmental conditions, and a paper in this issue, by Koide et al ., addresses this problem (Koide et al ., pp. 163–168). The variability is especially apparent in the field, thus obscuring the possible roles of mycorrhizas in community structure and succession (Fitter, 1985; McGonigle, 1988).  相似文献   

20.
The aim of this research was to carry out a critical study of the method of obtaining size equivalence between non-symbiotic alfalfa and alfalfa associated with Glomus and/or Rhizobium by applying fixed addition rates of nutrients to the non-symbiotic controls. The experimental design included three nutrient response curves in which the levels of added phosphorus and/or nitrogen were constant during the whole plant growth process: 1) a phosphorus response curve, in order to compare the growth of double symbiotic plants with that of only-Rhizobium inoculated ones; 2) a nitrogen response curve, that consisted of a comparison between the growth of double symbiotic alfalfa and four treatments associated only with Glomus; 3) a phosphorus and nitrogen response curve, to compare the growth of non-inoculated alfalfa with that of double symbiotic plants. Although similar size was achieved among some treatments at harvest, shoot growth over time and nutrient concentrations in tissues differed, indicating that growth equivalence did not mean functional equivalence. A second experimental design was performed taking into account the establishment of microsymbionts for determining the adequate moment to add supplemental phosphorus and/or nitrogen. It included four treatments: a) double symbiotic plants (MR); b) plants inoculated with Rhizobium only (R); c) plants inoculated with Glomus only (M), and d) non-inoculated plants (N). Great similarity in terms of plant growth and nutrient contents in tissues were obtained. Moreover, symbiotic plants were able to produce similar dry matter than non-symbiotic ones under P and N limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号