首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

2.
Oxytocin has both insulin-like and insulin antagonistic actions in fat cells in vitro. The anti-insulin-like effects of oxytocin in dispersed rat fat cells have been studied. The magnitude of the anti-insulin-like activity varies with the metabolic pathway of glucose utilization; oxidation [14CO2 production], 32%; glycogen synthesis (D-[U-14C] glucose incorporation into glycogen), 77%. In addition, direct inhibition of the activation of fat cell glycogen synthase has been shown. These inhibitory effects depend upon an intact disulfide ring, since the ability of N-ethylmaleimide-reacted oxytocin to inhibit insulin-stimulated processes was reduced by more than 90% when compared to the intact molecule.  相似文献   

3.
The metabolic effects of human placental lactogen (HPL) on rat and human white fat were tested in vitro. When tested against rat tissue, HPL resembled insulin in stimulating uptake of glucose and incorporation of [14C] glucose into CO2, triglyceride and glycogen, but differed from insulin in stimulating glycerol release and in failing to stimulate the incorporation of [14C] The stimulation of [14C] glucose incorporation and the inhibition of glycerol release by insulin were antagonized by HPL. The effects of HPL on human white fat resembled those on rat white fat,except that glycerol release was not stimulated in human tissue. The possible role of HPL in causing the diabetogenic stress of pregnancy is discussed in the light of these findings.  相似文献   

4.
1. Lipogenesis was studied in vivo by giving mice 250mg. meals of [U-(14)C]glucose and measuring the disposition and incorporation of label. About 48% of the (14)C dose was eliminated as (14)CO(2) in the first 2hr. At 60min. after administration, 1.0, 1.9 and 11.9% of the dose was recovered as liver glycogen, liver fatty acid and carcass fatty acid respectively. Of the [(14)C]glucose converted into fat in the epididymal pads about 90% was present as glyceride fatty acid and 10% as glyceride glycerol. 2. Hepatic synthesis of fatty acid was depressed by dietary fat to a much greater extent than was synthesis outside the liver. Both feeding with fat and starvation decreased the proportion of the label taken up by adipose tissue present as fat (triglyceride) and increased the proportion of triglyceride label present as glyceride glycerol. These results are consistent with the hypothesis that the primary action of both these conditions in decreasing fat synthesis is to inhibit synthesis of fatty acids. 3. Turnover of body fat labelled in vivo from [U-(14)C]glucose was estimated from the decline in radioactivity measured over the first 24hr. of the experiment. The half-life of liver and extrahepatic fatty acids (excluding epididymal fat) was 16hr. and 3 days respectively. In contrast, no measurable decrease in radioactivity of the fatty acids of epididymal fat was observed for 7 days after administration of the [U-(14)C]glucose.  相似文献   

5.
1. The effects of synthetic human amylin on basal and insulin-stimulated (100 and 1000 microunits/ml) rates of lactate formation, glucose oxidation and glycogen synthesis were measured in the isolated rat soleus muscle preparation incubated in the presence of various concentrations of glucose (5, 11 and 22 mM). 2. The rate of glucose utilization was increased by about 2-fold by increasing the glucose concentration from 5 to 22 mM. 3. Synthetic human amylin (10 nM) significantly inhibited (by 46-56%) glycogen synthesis, irrespective of the concentration of insulin or glucose present in the incubation medium. 4. Amylin (10 nM) did not affect insulin-stimulated rates of 2-deoxy[3H]glucose transport and phosphorylation. 5. Intraperitoneal administration of insulin (100 micrograms/kg) to rats in vivo stimulated the rate of [U-14C]glucose incorporation into glycogen in the diaphragm by about 80-fold. This rate was decreased (by 28%) by co-administration of amylin (66 micrograms/kg).  相似文献   

6.
It is well documented that adipose tissue glycogen content decreases during fasting and increases above control during refeeding. We now present evidence that these fluctuations result from adaptations intrinsic to adipose tissue glycogen metabolism that persist in vitro: in response to insulin (1 milliunit/ml), [3H]glucose incorporation into rat fat pad glycogen was reduced to 10% of control after a 3-day fast; incorporation increased 6-fold over fed control on the 4th day of refeeding following a 3-day fast. We have characterized this adaptation with regard to alterations in glycogen synthase and phosphorylase activity. In addition, we found that incubation of fat pads from fasted rats with insulin (1 milliunit/ml) increased glucose-6-P content, indicating that glucose transport was not the rate-limiting step for glucose incorporation into glycogen in the presence of insulin. In contrast, feeding a fat-free diet resulted in dramatic increases in glycogen content of fat pads without a concomitant increase in glucose incorporation into glycogen in response to insulin (1 milliunit/ml). Thus, fasting and refeeding appeared to alter insulin action on adipose tissue glycogen metabolism more than this dietary manipulation.  相似文献   

7.
The effects of adenosine on glycogen metabolism have been studied in isolated fat-pads from epididymal adipose tissue. Adenosine caused a sustained short-term increase in the incorporation of [U-14C]glucose into glycogen, as well as a stimulation of both basal and insulin-induced [1-14C]glucose oxidation. Adenosine produced changes also in the activity of glycogen synthase and phosphorylase, these effects being apparent only when glucose was present in the incubation medium. The addition of adenosine prevented the depressed synthesis of glycogen observed in the presence of dibutyryl cyclic AMP. In the presence of adenosine deaminase, the stimulation by insulin of glycogen synthesis was markedly decreased. The results suggest that adenosine may have a regulatory role on glycogen synthesis by facilitating the glucose transport.  相似文献   

8.
1. The inhibitory effect of salicylate, in concentrations ranging from 0.1 to 20mm, on the incorporation of radioactivity from l-[U-(14)C]leucine into the protein of isolated rat diaphragm muscle and of cell-free systems from rat liver was studied. 2. The lowest salicylate concentrations producing significant inhibitions of amino acid incorporation were as follows: isolated rat diaphragm, 0.1mm; rat-liver mitochondrial-microsomal system, 0.1mm; rat-liver microsomal system, 0.3mm. 3. Salicylate concentrations of 2.5mm and above were found to inhibit creatine-kinase activity in vitro.  相似文献   

9.
1. Measurable incorporation of radioactive carbon from [U-14C]pyruvate, [U-14C]-glutamate and [14C]bicarbonate into the glycogen synthesized by brain slices in vitro was demonstrated. 2. The fructose diphosphatase activity of guinea-pig brain was determined and found to be about 0.03 mumol of substrate degraded/min per g of fresh tissue. 3. The specific radioactivity of the glucose carbon from glycogen relative to that of the precursor added to the incubation medium gave approximate values of 0.195 for glucose, 0.006 for pyruvate, 0.039 for glutamate and 0.001 for bicarbonate.  相似文献   

10.
1. The metabolism of [U-14C]glucose by the isolated diaphragm muscle of normal rats, rats rendered diabetic with streptozotocin and rats with transitory insulin deficiency after an injection of anti-insulin serum was studied. 2. The incorporation of [14C]glucose into glycogen and oligosaccharides was significantly decreased in the diabetic diaphragm muscle and in the muscle from rats treated with anti-insulin serum. 3. Neither diabetes nor transitory insulin deficiency influenced the oxidation of glucose, or the formation of lactate and hexose phosphate esters from glucose. 4. Insulin fully restored the incorporation of glucose into glycogen and maltotetraose in the diabetic muscle, but the incorporation into oligosaccharides, although increased in the presence of insulin, was significantly lower than the values obtained with normal diaphragm in the presence of insulin.  相似文献   

11.
The cyclic GMP derivative, 8-bromo cyclic GMP, increases the uptake of D-xylose and of 2-deoxy D-glucose into intact rat diaphragm incubated in vitro. 8-Bromo cyclic GMP does not stimulate the incorporation of [14C]glucose into glycogen in the diaphragm, or the uptake of alphalpha-amino isobutyric acid into this tissue. The effect of 8-bromo cyclic GMP on the diaphragm is consistent with the hypothesis that cyclic GMP plays a role in the regulation of sugar transport in muscle.  相似文献   

12.
The cyclic GMP derivative, 8-bromo cyclic GMP, increases the uptake of D-xylose and of 2-deoxy D-glucose into intact rat diaphragm incubated in vitro. 8-Bromo cyclic GMP does not stimulate the incorporation of [14C] glucose into glycogen in the diaphragm, or the uptake of α-amino isobutyric acid into this tissue. The effect of 8-bromo cyclic GMP on the diaphragm is consistent with the hypothesis that cyclic GMP plays a role in the regulation of sugar transport in muscle.  相似文献   

13.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

14.
1. The incorporation of [(35)S]sulphate in vivo into the acid-soluble intermediates extracted from young rat skin showed three sulphated hexosamine-containing components. 2. The rates of synthesis of these components were determined in vivo by measuring the incorporation of radioactivity from [U-(14)C]glucose into their isolated hexosamine moieties. 3. The incorporation of radioactivity from [U-(14)C]glucose into the isolated hexosamine and uronic acid moieties of the acid glycosaminoglycans was also measured. These results, combined with those obtained on the intermediary pathways of hexosamine and uronic acid biosynthesis previously determined in this tissue, indicated that the acid-soluble sulphated hexosamine-containing components were not precursors of the sulphated hexosamine found in the acid glycosaminoglycans. 4. The rates of synthesis of the acid glycosaminoglycan fractions were calculated from the incorporation of radioactivity from [U-(14)C]glucose into the hexosamine moiety. The sulphated components containing principally dermatan sulphate, chondroitin 6-sulphate and in smaller amounts, chondroitin 4-sulphate, heparan sulphate and heparin appeared to be turning over about twice as rapidly as hyaluronic acid and about four times as rapidly as the small keratan sulphate fraction. The relative rates of synthesis of the sulphated glycosaminoglycans were calculated from the incorporation of [(35)S]sulphate and were in agreement with those from (14)C-labelling studies.  相似文献   

15.
1. The metabolism of [U-(14)C]glucose in perfused resting and contracting diaphragm muscle from normal rats and rats made diabetic with streptozotocin was studied in the presence and absence of insulin. 2. The incorporation of [U-(14)C]-glucose into glycogen and oligosaccharides was stimulated by insulin under all experimental conditions studied. 3. In the normal perfused resting diaphragm muscle the incorporation of radioactivity from [(14)C]glucose into lactate and CO(2) was not affected by insulin. 4. Periodic contractions, induced by electrical stimulation of the perfused diaphragm muscle in the absence of insulin, caused an increased incorporation of (14)C into glycogen and hexose phosphate esters, whereas incorporation of (14)C into lactate was greatly decreased. Production of (14)CO(2) in the contracting muscle was not significantly different from that in resting muscle. Addition of insulin to the perfusion liquid caused a further increase in formation of [(14)C]-glycogen in contracting muscle to values reached in the resting muscle in the presence of insulin. Formation of [(14)C]lactate was also stimulated by insulin, to values close to those found in the resting muscle in the presence of insulin. 5. In the diabetic resting muscle the rate of glucose metabolism was very low in the absence of insulin. Insulin increased formation of [(14)C]glycogen to the value found in normal muscle in the absence of insulin. Production of (14)CO(2) and formation of [(14)C]hexose phosphate remained unchanged. 6. In the diabetic contracting muscle production of (14)CO(2) was increased to values approaching those found in normal contracting muscle. Formation of [(14)C]lactate and [(14)C]glycogen was also increased by contraction, to normal values. Only traces of [(14)C]hexose phosphate were detectable. Addition of insulin to the perfusion medium stimulated formation of [(14)C]glycogen, to values found in normal contracting muscle. Production of [(14)C]hexose phosphate was stimulated by insulin, to approximately the values found in the normal contracting muscle. Production of (14)CO(2) and [(14)C]lactate, however, was not significantly affected by insulin. 7. These results indicate that the defects of glucose metabolism observed in perfused resting diabetic diaphragm muscle can be partially corrected by contraction, and in the presence of insulin the contracting diabetic muscle has a completely normal pattern of glycogen synthesis and lactate production, but CO(2) production remains impaired.  相似文献   

16.
Lactate metabolism in the perfused rat hindlimb.   总被引:2,自引:0,他引:2       下载免费PDF全文
M Shiota  S Golden    J Katz 《The Biochemical journal》1984,222(2):281-292
A preparation of isolated rat hindleg was perfused with a medium consisting of bicarbonate buffer containing Ficoll and fluorocarbon, containing glucose and/or lactate. The leg was electrically prestimulated to deplete partially muscle glycogen. The glucose was labelled uniformly with 14C and with 3H in positions 2, 5 or 6, and lactate uniformly with 14C and with 3H in positions 2 or 3. Glucose carbon was predominantly recovered in glycogen, and to a lesser extent in lactate. The 3H/14C ration in glycogen from [5-3H,U-14C]- and [6-3H,U-14C]-glucose was the same as in glucose. Nearly all the utilized 3H from [2-3H]glucose was recovered as water. Insulin increased glucose uptake and glycogen synthesis 3-fold. When the muscle was perfused with a medium containing 10 mM-glucose and 2 mM-lactate, there was little change in lactate concentration. 14C from lactate was incorporated into glycogen. There was a marked exponential decrease in lactate specific radioactivity, much greater with [3H]- than with [14C]-lactate. The 'apparent turnover' of [U-14C]lactate was 0.28 mumol/min per g of muscle, and those of [2-3H]- and [3-3H]-lactate were both about 0.7 mumol/min per g. With 10 mM-lactate as sole substrate, there was a net uptake of lactate, at a rate of about 0.15 mumol/min per g, and the apparent turnover of [U-14C]lactate was 0.3 mumol/min per g. The apparent turnover of [3H]lactate was 3-5 times greater. When glycogen synthesis was low (no prestimulation, no insulin), the incorporation of lactate carbon into glycogen exceeded that from glucose, but at high rates of glycogen deposition the incorporation of lactate carbon was much less than that of glucose. Lactate incorporation into glycogen was similar in fast-twitch white and fast-twitch red muscle, but was very low in slow-twitch red fibres. We find that (a) pyruvate in muscle is incorporated into glycogen without randomization of carbon, and synthesis is not inhibited by mercaptopicolinate or cycloserine; (b) there is extensive lactate turnover in the absence of net lactate uptake, and there is a large dilution of 14C-labelled lactate from endogenous supply; (c) there is extensive detritiation of [2-3H]- and [3-3H]-lactate in excess of 14C utilization.  相似文献   

17.
Glycogen synthesis was examined in primary cultures of adult rat hepatocytes that had been isolated from rats following a 24-h fast. Glycogen synthesis was dependent on the concentration of glucose in the culture medium and also required the presence of insulin. The addition of dexamethasone to the culture medium also increased the amount of glycogen synthesis. When the culture medium was supplemented with [U-14C,3-3H]glucose, it was found that approximately 60% of the glucose incorporated into glycogen was not derived from the pool of labeled glucose. In addition, the relative ratio of 3H/14C in the newly synthesized glycogen was approximately 50% of the ratio of the two isotopes in glucose in the culture medium, indicating that the glucose had undergone metabolism prior to its incorporation into glycogen. However, when hepatocytes were isolated from rats that had been fed ad libitum and the synthesis of glycogen from [U-14C,3-3H]glucose was followed, the relative ratio of the two isotopes in glycogen was similar to that measured for glucose in the culture medium, indicating that the glucose was directly incorporated into glycogen without any apparent metabolism. These results indicate that the synthesis of glycogen from glucose may, at least in part, follow an indirect pathway whereby glucose is metabolized prior to incorporation of the carbon into glycogen, but that the pathway followed for the synthesis of glycogen is dependent on the prior metabolic state of the animal.  相似文献   

18.
The biologically active partial sequence Arg-Gly-Phe-Phe (position B 22-25 of the insulin B chain) in the form of the synthetic tetrapeptidamide, was compared in several bioassays with the following analogous synthetic peptides: homoarginyl-, ornithyl-, lysyl-, citrullyl-, alanyl- and NG-nitroarginyl-Gly-Phe-Phe-NH2. The syntheses of the lysyl- and alanyl-tetrapeptidamides are described. After intraperitoneal injection of the peptides in doses of 3-100 mumol per 100 g rat, together with [U-14C]glucose, the natural sequence Arg-Gly-Phe-Phe showed the highest insulin like activity (incorporation of labeled carbon into the diaphragm). The activity of the homoarginyl peptide was a little weaker. The ornithyl- and the lysyl-peptide, however, showed a remarkably diminished activity. The activity of the citrullyl-peptide was even lower and the alanyl-peptide was inactive. In vitro assays with rat diaphragm showed the same range of effects for the elevation of glucose uptake and glycogen content of the diaphragm. The activity decreased in the following order: Arg- greater than Har- greater than Orn- greater than Cit-Gly-Phe-Phe-NH2. Alanyl- and Nitroarginyl-Gly-Phe-Phe-NH2 were without effect. In isolated fat cells the glucose oxidation was enhanced significantly only by the arginyl-peptide. The results show that among the structures examined the guanidino group carried by the C5 chain of arginine is the most effective. The results are in accordance with our preceding work [1] using semisynthetic insulins obtained from natural A-chain and synthetic B-chain variants. In these products the replacement of Arg B 22 by ornithine or lysine also led to drastically diminished activity and after replacement of Arg B 22 by alanine the activity also disappeared.  相似文献   

19.
1. The metabolic pattern of [U-(14)C]glucose in the isolated rat heart has been studied, with both retrograde aortic (Langendorff) and atrially (working) perfused preparations in the presence and absence of insulin, in normal animals, animals rendered insulin-deficient (by injection of anti-insulin serum 1hr. before excision of the heart) and animals rendered diabetic by streptozotocin injection 7 days before use. 2. Radioautochromatograms of heart extracts show that the pattern of glucose metabolism in heart muscle is more complex than in diaphragm muscle. In addition to (14)CO(2), glycogen, oligosaccharides, phosphorylated sugars and lactate (the main metabolites formed from [(14)C]glucose in diaphragm muscle), (14)C label from [(14)C]glucose appears in heart muscle in glutamate, glutamine, aspartate and alanine, and in tricarboxylic acid-cycle intermediates. 3. By a quantitative scanning technique of two-dimensional chromatograms it was found that a mechanical work load stimulates glucose metabolism, increasing by a factor of 2-3 incorporation of (14)C into all the metabolites mentioned above except lactate and phosphorylated sugars, into which (14)C incorporation is in fact diminished; (14)CO(2) production is equally stimulated. 4. Addition of insulin to the perfusion fluid of the working heart causes increases in (14)C incorporation, by a factor of about 1.5 into (14)CO(2), by a factor of about 3-5 into glycogen, lactate and phosphorylated sugars, by a factor of about 2-3 into glutamate and tricarboxylic acid-cycle intermediates and by a factor of about 0.5 into aspartate, whereas incorporation into alanine and glutamine is not affected. The effect of a work load on the pattern of glucose metabolism is thus different from that of insulin. 5. Increasing the concentration of glucose in the perfusion fluid from 1 to 20mm leads to changes of the pattern of glucose metabolism different from that brought about by insulin. (14)CO(2) production steadily increases whereas [(14)C]lactate and glycogen production levels off at 10mm-glucose, at values well below those reached in the presence of insulin. 6. In Langendorff hearts of animals rendered insulin-deficient by anti-insulin serum or streptozotocin, glucose uptake, formation of (14)CO(2) and [(14)C]lactate, and (14)C incorporation into glycogen and oligosaccharides are decreased. In insulin-deficient working hearts, however, glucose uptake and (14)CO(2) production are normal, whereas incorporation of (14)C into glycogen and [(14)C]lactate production are greatly decreased. 7. Insulin added to the perfusion fluid restores (14)C incorporation from glucose into (14)CO(2), glycogen and lactate in the Langendorff heart from animals rendered insulin-deficient by anti-insulin serum; in hearts from streptozotocin-diabetic animals addition of insulin restores (14)C incorporation into glycogen and lactate, but (14)CO(2) production remains about 50% below normal. 8. The bearing of these results on the problem of the mode of action of insulin is discussed.  相似文献   

20.
Studies have been carried out on the incorporation of [U-(14)C]glucose, [2-(14)C]pyruvate, [2-(14)C]acetate, and [1-(14)C]-palmitate into the phospholipids of the isolated perfused rat lung in the presence of either 6 or 45 mm total CO(2) concentration in the perfusion medium. Incorporation of [U-(14)C]glucose into total phospholipid and into the phosphatidylcholine fraction was increased 19-53% over the 2-hr perfusion period in lungs perfused with medium containing 45 as compared with 6 mm CO(2). The incorporation of [2-(14)C]acetate, [2-(14)C]-pyruvate, and [1-(14)C]palmitate was not affected by the change in medium CO(2) concentration. Increased incorporation of [U-(14)C]glucose combined with a shift toward greater incorporation into the fatty acids of the phosphatidylcholine fraction produced a maximum increase of 90% in [U-(14)C]glucose incorporation into the fatty acids of phosphatidylcholine after 2 hr of perfusion in the presence of medium containing 45 mm CO(2) as compared with 6 mm CO(2). The increase in medium CO(2) concentration produced as much as a 150% increase in [U-(14)C]glucose incorporation into palmitate derived from the phosphatidylcholine fraction. The results provide evidence that glucose functions as an important precursor of palmitate in the phosphatidylcholine fraction of lung phospholipids and that the CO(2) concentration of the perfusion medium affects the incorporation of glucose into palmitate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号