首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A structural investigation has been carried out on the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides (LPS) isolated by dephosphorylation, O-deacylation and N-deacylation. The carbohydrate backbone is a short-chain saccharide consisting of nine monosaccharide units i.e., 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA), L-glycero-D-manno-heptose (L,D-Hep), D-glycero-D-manno-heptose (D,D-Hep), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), and 2 mol of 2-amino-2-deoxy-D-glucose (D-glucosamine, GlcN). Based on the data obtained by NMR spectroscopy, fast-atom bombardment mass spectrometry (FABMS) and methylation analysis, a structure was elucidated for the carbohydrate backbone of O2 LPS. In the native O2 LPS, the 2-amino-2-deoxy-D-glucitol (GlcN-ol) at the reducing end of the nonasaccharide is present as GlcN. The lipid A backbone is a beta-D-GlcN-(1-->6)-D-GlcN disaccharide as is the case for many Gram-negative bacterial LPS. The lipid A proximal Kdo is substituted by the distal part of the carbohydrate chain at position-5. In the native O2 LPS, D-galacturonic acid, which is liberated from LPS by mild acid treatment or by dephosphorylation in hydrofluoric acid, is present although its binding position is unknown at present.  相似文献   

2.
Structural characterization studies have been carried out on the carbohydrate backbone of Vibrio parahaemolyticus serotype O6 lipopolysaccharides (LPS). The carbohydrate backbone isolated from O6 LPS by sequential derivatization, that is, dephosphorylation, O-deacylation, pyridylamination, N-deacylation and N-acetylation, is a nonasaccharide consisting of 3 mol of D-glucosamine (GlcN) (of which one is pyridylaminated), 2 mol of L-glycero-D-manno-heptose (Hep), and 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA) and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Structural analyses by nuclear magnetic resonance spectroscopy and fast-atom bombardment mass spectrometry demonstrated that the carbohydrate backbone is β-Galp-(1→2)-α-Hepp-(1→3)-α-Hepp-(1→5)-α-Kdop-(2→6)-β-GlcpNAc-(1→6)-GlcNAc-PA, in which the 3-substituted α-Hepp is further substituted by β-GlcpNAc-(1→4)-β-Glcp at position 4 and by β-GlcpA at position 2. In native O6 LPS, an additional 1 mol of D-galacturonic acid, which is liberated by dephosphorylation in hydrofluoric acid, is present at an unknown position. A previous study by the present authors reported that, of 13 O-serotype LPS of V. parahaemolyticus, the only LPS from which Kdo was detected was from O6 LPS after mild acid hydrolysis. In the present study, we have demonstrated that only 1 mol of Kdo is present at the lipid A proximal position, a component which is common to the LPS in all serotypes of the bacterium, and that there is no additional Kdo in the carbohydrate backbone of O6 LPS. ELISA and ELISA inhibition analysis using antisera against O6 and Salmonella enterica Minnesota R595 and LPS of both strains further revealed that Kdo is not involved as an antigenic determinant of O6 LPS.  相似文献   

3.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

4.
Septic shock due to infections with Gram-negative bacteria is a severe disease with a high mortality rate. We report the identification of the antigenic determinants of an epitope that is present in enterobacterial lipopolysaccharide (LPS) and recognized by a cross-reactive monoclonal antibody (mAb WN1 222-5) regarded as a potential means of treatment. Using whole LPS and a panel of neoglycoconjugates containing purified LPS oligosaccharides obtained from Escherichia coli core types R1, R2, R3, and R4, Salmonella enterica, and the mutant strain E. coli J-5, we showed that mAb WN1 222-5 binds to the distal part of the inner core region and recognizes the structural element R1-alpha-d-Glcp-(1-->3)-[l-alpha-d-Hepp-(1-->7)]-l-alpha-d-Hepp 4P-(1-->3)-R2 (where R1 represents additional sugars of the outer core and R2 represents additional sugars of the inner core), which is common to LPS from all E. coli, Salmonella, and Shigella. WN1 222-5 binds poorly to molecules that lack the side chain heptose or lack phosphate at the branched heptose. Also molecules that are substituted with GlcpN at the side chain heptose are poorly bound. Thus, the side chain heptose and the 4-phosphate on the branched heptose are main determinants of the epitope. We have determined the binding kinetics and affinities (KD values) of the monovalent interaction of E. coli core oligosaccharides with WN1 222-5 by surface plasmon resonance and isothermal titration microcalorimetry. Affinity constants (KD values) determined by SPR were in the range of 3.6 x 10-5 to 3.2 x 10-8 m, with the highest affinity being observed for the core oligosaccharide from E. coli F576 (R2 core type) and the lowest KD values for those from E. coli J-5. Affinities of E. coli R1, R3, and R4 oligosaccharides were 5-10-fold lower, and values from the E. coli J-5 mutant were 29-fold lower than the R2 core oligosaccharide. Thus, the outer core sugars had a positive effect on binding.  相似文献   

5.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

6.
Monoclonal antibodies against the lipopolysaccharide (LPS) of the deep rough mutant I-69 Rd/b+ of Haemophilus influenzae were obtained after immunization of mice with sheep erythrocytes which had been coated with de- O -acylated LPS. Characterization of antibodies was performed by enzyme immuno assay (EIA) using LPS or neoglycoconjugates containing partial structures of LPS as solid-phase antigens and by haemagglutination with sheep erythrocytes coated with de- O -acylated LPS. Binding data were confirmed by EIA inhibition experiments using deacylated LPS or synthetic partial structures thereof. Three antibodies were specific for 3-deoxy- d - manno -octulopyranosonic acid- (Kdo) 5-phosphate, one for Kdo-4-phosphate, and one required, in addition to a Kdo-phosphate, parts of the phosphorylated glucosamine backbone of lipid A. All antibodies also bound in (i) Western blots to bacterial whole-cell lysates or isolated LPS separated by SDS–PAGE, (ii) bacterial colony blots, and (iii) immunofluorescence with live bacteria. The latter result indicated that Kdo-4- and Kdo-5-phosphate are synthesized by the bacteria and are not the result of phosphate migration.  相似文献   

7.
The core structure of the lipopolysaccharide (LPS) isolated from a rough strain of the phytopathogenic bacterium Pseudomonas syringae pv. phaseolicola, GSPB 711, was investigated by sugar and methylation analyses, Fourier transform ion-cyclotron resonance ESI MS, and one- and two-dimensional 1H-, 13C- and 31P-NMR spectroscopy. Strong alkaline deacylation of the LPS resulted in two core-lipid A backbone undecasaccharide pentakisphosphates in the ratio approximately 2.5 : 1, which corresponded to outer core glycoforms 1 and 2 terminated with either L-rhamnose or 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), respectively. Mild acid degradation of the LPS gave the major glycoform 1 core octasaccharide and a minor truncated glycoform 2 core heptasaccharide, which resulted from the cleavage of the terminal Kdo residues. The inner core of P. syringae is distinguished by a high degree of phosphorylation of L-glycero-D-manno-heptose residues with phosphate, diphosphate and ethanolamine diphosphate groups. The glycoform 1 core is structurally similar but not identical to one of the core glycoforms of the human pathogenic bacterium Pseudomonas aeruginosa. The outer core composition and structure may be useful as a chemotaxonomic marker for the P. syringae group of bacteria, whereas a more conserved inner core structure appears to be representative for the whole genus Pseudomonas.  相似文献   

8.
Lipopolysaccharide (LPS) of Chlamydophila psittaci but not of Chlamydophila pneumoniae or Chlamydia trachomatis contains a tetrasaccharide of 3-deoxy-alpha-d-manno-oct-2-ulopyranosonic acid (Kdo) of the sequence Kdo(2-->8)[Kdo(2-->4)] Kdo(2-->4)Kdo. After immunization with the synthetic neoglycoconjugate antigen Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4) Kdo-BSA, we obtained the mouse monoclonal antibody (mAb) S69-4 which was able to differentiate C. psittaci from Chlamydophila pecorum, C. pneumoniae, and C. trachomatis in double labeling experiments of infected cell monolayers and by enzyme-linked immunosorbent assay (ELISA). The epitope specificity of mAb S69-4 was determined by binding and inhibition assays using bacteria, LPS, and natural or synthetic Kdo oligosaccharides as free ligands or conjugated to BSA. The mAb bound preferentially Kdo(2-->8)[Kdo(2-->4)]Kdo(2-->4)Kdo(2-->4) with a K(d) of 10 microM, as determined by surface plasmon resonance (SPR) for the monovalent interaction using mAb or single chain Fv. Cross-reactivity was observed with Kdo(2-->4)Kdo(2-->4) Kdo but not with Kdo(2-->8)Kdo(2-->4)Kdo, Kdo disaccharides in 2-->4- or 2-->8-linkage, or Kdo monosaccharide. MAb S69-4 was able to detect LPS on thin-layer chromatography (TLC) plates in amounts of <10 ng by immunostaining. Due to the high sensitivity achieved in this assay, the antibody also detected in vitro products of cloned Kdo transferases of Chlamydia. The antibody can therefore be used in medical and veterinarian diagnostics, general microbiology, analytical biochemistry, and studies of chlamydial LPS biosynthesis. Further contribution to the general understanding of carbohydrate-binding antibodies was obtained by a comparison of the primary structure of mAb S69-4 to that of mAb S45-18 of which the crystal structure in complex with its ligand has been elucidated recently (Nguyen et al., 2003, Nat. Struct. Biol., 10, 1019-1025).  相似文献   

9.
Yersinia enterocolitica O:9 strain Ruokola/71-c-PhiR1-37-R possesses mainly rough-type lipopolysaccaride (LPS) and smaller amounts of S-form LPS. Structural analysis of the former is reported here. After deacylation of the LPS, the phosphorylated carbohydrate backbone of the inner core-lipid A region could be isolated by using high-performance anion-exchange chromatography. Its structure was determined by means of compositional and methylation analyses and 1H-, 13C-, and 31P-NMR spectroscopy as: [see text] in which L-alpha-D-Hep is L-glycero-alpha-D-manno-heptopyranose, D-alpha-D-Hep is D-glycero-alpha-D-manno-heptopyranose, and Kdo is 3-deoxy-D-manno-oct-2-ulopyranosonic acid. All hexoses are pyranoses.  相似文献   

10.
The core regions of the lipopolysaccharides (LPS) from Klebsiella pneumoniae serotypes O1, O2a, O2a,c, O3, O4, O5, O8, and O12 were analysed using NMR spectroscopy, ESI-MS spectroscopy, and chemical methods. All the LPSs had similar core structures, as shown below, differing only in the number and position of beta-D-galacturonic acid substituents: [carbohydrate structure: see text] where P is H or alpha-Hep, J, K is H or beta-GalA. LPS from all serotypes contained varying proportions of structures having additional or missing phosphate substituents. The core from serotype O1 contained a minor amount of a previously described variant with alpha-DD-Hep-(1-->2)-alpha-DD-Hep-(1-->6)-alpha-GlcN-(1--> replacing the alpha-Hep-(1-->4)-alpha-Kdo-(2-->6)-alpha-GlcN-(1--> component.  相似文献   

11.
We report the novel pattern of lipopolysaccharide (LPS) expressed by two disease-associated nontypeable Haemophilus influenzae strains, 1268 and 1200. The strains express the common structural motifs of H. influenzae; globotetraose [beta-d-GalpNAc-(1-->3)-alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and its truncated versions globoside [alpha-d-Galp-(1-->4)-beta-d-Galp-(1-->4)-beta-d-Glcp] and lactose [beta-d-Galp-(1-->4)-beta-d-Glcp] linked to the terminal heptose (HepIII) and the corresponding structures with an alpha-d-Glcp as the reducing sugar linked to the middle heptose (HepII) in the same LPS molecule. Previously these motifs had been found linked only to either the proximal heptose (HepI) or HepIII of the triheptosyl inner-core moiety l-alpha-d-Hepp-(1-->2)-[PEtn-->6]-l-alpha-d-Hepp-(1-->3)-l-alpha-d-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-lipid A. This novel finding was obtained by structural studies of LPS using NMR techniques and ESI-MS on O-deacylated LPS and core oligosaccharide material, as well as electrospray ionization-multiple-step tandem mass spectrometry on permethylated dephosphorylated oligosaccharide material. A lpsA mutant of strain 1268 expressed LPS of reduced complexity that facilitated unambiguous structural determination. Using capillary electrophoresis-ESI-MS/MS we identified sialylated glycoforms that included sialyllactose as an extension from HepII, this is a further novel finding for H. influenzae LPS. In addition, each LPS was found to carry phosphocholine and O-linked glycine. Nontypeable H. influenzae strain 1200 expressed identical LPS structures to 1268 with the difference that strain 1200 LPS had acetates substituting HepIII, whereas strain 1268 LPS has glycine at the same position.  相似文献   

12.
The lipopolysaccharide (LPS) of strain 8081-c-R2, a spontaneous R-mutant of Yersinia enterocolitica serotype O:8, was isolated using extraction with phenol/chloroform/light petroleum. Its compositional analysis indicated the presence of D-GlcN, D-Glc, L-glycero-D-manno- and D-glycero-D-manno-heptose, 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and phosphate. From deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide, three oligosaccharides (1-3) were isolated using high-performance anion-exchange chromatography, the structures of which were determined by compositional analysis and one- and two-dimensional NMR spectroscopy as [carbohydrate structure see text] in which all sugars are pyranoses, and R and R' represent beta-D-Glc (in 1 and 2) and beta-D-GlcN (in 1 only), respectively. D-alpha-D-Hep is D-glycero-alpha-D-manno-heptose, L-alpha-D-Hep is L-glycero-alpha-D-manno-heptose, Kdo is 3-deoxy-D-manno-oct-2-ulosonic acid, and P is phosphate. The liberated lipid A was analyzed by compositional analyses and MALDI-TOF MS. Its beta-D-GlcN4P-(1-->6)-alpha-D-GlcN-1-->P backbone is mainly tetra-acylated with two amide- and one ester-linked (at O3 of the reducing GlcN) (R)-3-hydroxytetradecanoic acid residues, and one tetradecanoic acid that is attached to the 3-OH group of the amide-linked (R)-3-hydroxytetradecanoic acid of the nonreducing GlcN. Additionally, small amounts of tri- and hexa-acylated lipid A species occur.  相似文献   

13.
The chemical properties of a lipopolysaccharide (LPS) isolated from a new O-antigenic form (O13) of Vibrio parahaemolyticus were investigated. The LPS contained glucose, galactose, L -glycero-D -manno-heptose and glucosamine. 2-Keto-3-deoxy-octonate (KDO) was not detected in the LPS by the periodate-thiobarbituric acid test (Weissbach's reaction) under conventional hydrolysis conditions. Instead, phosphorylated KDO (X1 and X2) was found in its strong-acid hydrolysate. This sugar composition was identical to that of V. parahaemolyticus O3, O5 and O11 LPS, indicating that, based on the sugar composition, O13 LPS belongs to Chemotype III to which O3, O5 and O11 belong. In addition, structural study demonstrated the presence of KDO 4-phosphate in its inner-core region.  相似文献   

14.
Novobiocin-supersensitive (NS) mutants which could not grow on plates containing 40 mug or less of novobiocin per ml were isolated from Escherichia coli strain JE1011 (derived from E. coli K-12). Most of these NS mutants were found to have incomplete lipopolysaccharides (LPS), and they lack phosphate diester bridges in their backbone structure, with or without total loss of heptose, to which the phosphate diester is linked, and consequently lack external outer-core oligosaccharides. The phosphate diester bridges in the LPS backbone are apparently very important in forming a cell surface structure resistant to the penetration of antibiotics such as novobiocin, spiramycin, and actinomycin D. NS mutants, with incomplete LPS, lacking phosphates in their backbone structure were found to be resistant to phage T4, and those which also lacked heptose were resistant to phages T4 and T7. In contrast to the generally accepted idea that resistances to phages T3, T4, and T7 are linked genetically, no NS mutant was found to be resistant to T3. The possible structures of the receptors for T4 and T7 are discussed. The positions of novobiocin-supersensitive genes on the chromosome of several of the NS mutants defective in LPS were mapped. The genes were designated lpcA (between ara and lac) and lpcB (between 55 min and 60 min). The latter seemed to be a group of several related genes.  相似文献   

15.
3-Deoxy-d-manno-octulosonic acid (Kdo) is an eight-carbon sugar ubiquitous in Gram-negative bacterial lipopolysaccharides (LPS). Although its biosynthesis is well described, no protein has yet been identified as a Kdo hydrolase. However, Kdo hydrolase enzymatic activity has been detected in membranes of Helicobacter pylori and Francisella tularensis and may be responsible for the removal of side-chain Kdo from the LPS core saccharides. We now report the identification of genes encoding a Kdo hydrolase in F. tularensis Schu S4 and live vaccine strain strains, in H. pylori 26695 strain and in Legionella pneumophila Philadelphia 1 strain. We have renamed the genes kdhA for keto-deoxyoctulosonate hydrolase A. Deletion of kdhA abolished Kdo hydrolase activity in membranes of F. tularensis live vaccine strain. The F. tularensis kdhA mutant synthesized a core oligosaccharide containing a Kdo disaccharide with one of the Kdo residues being a terminal side chain. This side-chain Kdo monosaccharide was absent in the wild-type core oligosaccharide. Expression in Escherichia coli of recombinant KdhA from F. tularensis, H. pylori, and L. pneumophila resulted in a reduction of membrane-associated side-chain Kdo. The identification of this previously faceless enzyme will accelerate study of the biosynthetic basis and biologic impact for postbiosynthetic LPS structural modification.  相似文献   

16.
Helicobacter pylori produces a unique surface lipopolysaccharide (LPS) characterized by strikingly low endotoxicity that is thought to aid the organism in evading the host immune response. This reduction in endotoxicity is predicted to arise from the modification of the Kdo–lipid A domain of Helicobacter LPS by a series of membrane bound enzymes including a Kdo (3‐deoxy‐d ‐manno‐octulosonic acid) hydrolase responsible for the modification of the core oligosaccharide. Here, we report that Kdo hydrolase activity is dependent upon a putative two‐protein complex composed of proteins Hp0579 and Hp0580. Inactivation of Kdo hydrolase activity produced two phenotypes associated with cationic antimicrobial peptide resistance and O‐antigen expression. Kdo hydrolase mutants were highly sensitive to polymyxin B, which could be attributed to a defect in downstream modifications to the lipid A 4′‐phosphate group. Production of a fully extended O‐antigen was also diminished in a Kdo hydrolase mutant, with a consequent increase in core–lipid A. Finally, expression of O‐antigen Lewis X and Y epitopes, known to mimic glycoconjugates found on human tissues, was also affected. Taken together, we have demonstrated that loss of Kdo hydrolase activity affects all three domains of H. pylori LPS, thus highlighting its role in the maintenance of the bacterial surface.  相似文献   

17.
Studies of the lipopolysaccharide of Pseudomonas alcaligenes strain BR 1/2 were extended to the polysaccharide moiety. The crude polysaccharide, obtained by mild acid hydrolysis of the lipopolysaccharide, was fractionated by gel filtration. The major fraction was the phosphorylated polysaccharide, for which the approximate proportions of residues were; glucose (2), rhamnose (0.7), heptose (2-3), galactosamine (1), alanine (1), 3-deoxy-2-octulonic acid (1), phosphorus (5-6). The heptose was l-glycero-d-manno-heptose. The minor fractions from gel filtration contained free 3-deoxy-2-octulonic acid, P(i) and PP(i). The purified polysaccharide was studied by periodate oxidation, methylation analysis, partial hydrolysis, and dephosphorylation. All the rhamnose and part of the glucose and heptose occur as non-reducing terminal residues. Other glucose residues are 3-substituted, and most heptose residues are esterified with condensed phosphate residues, possibly in the C-4 position. Free heptose and a heptosylglucose were isolated from a partial hydrolysate of the polysaccharide. The location of galactosamine in the polysaccharide was not established, but either the C-3 or C-4 position appears to be substituted and a linkage to alanine was indicated. In its composition, the polysaccharide from Ps. alcaligenes resembles core polysaccharides from other pseudomonads: no possible side-chain polysaccharide was detected.  相似文献   

18.
Lipopolysaccharide (LPS) is the first defense against changing environmental factors for many bacteria. Here, we report the first structure of the LPS from cyanobacteria based on two strains of marine Synechococcus, WH8102 and CC9311. While enteric LPS contains some of the most complex carbohydrate residues in nature, the full-length versions of these cyanobacterial LPSs have neither heptose nor 3-deoxy-d-manno-octulosonic acid (Kdo) but instead 4-linked glucose as their main saccharide component, with low levels of glucosamine and galacturonic acid also present. Matrix-assisted laser desorption ionization mass spectrometry of the intact minimal core LPS reveals triacylated and tetraacylated structures having a heterogeneous mix of both hydroxylated and nonhydroxylated fatty acids connected to the diglucosamine backbone and a predominantly glucose outer core-like region for both strains. WH8102 incorporated rhamnose in this region as well, contributing to differences in sugar composition and possibly nutritional differences between the strains. In contrast to enteric lipid A, which can be liberated from LPS by mild acid hydrolysis, lipid A from these organisms could be produced by only two novel procedures: triethylamine-assisted periodate oxidation and acetolysis. The lipid A contains odd-chain hydroxylated fatty acids, lacks phosphate, and contains a single galacturonic acid. The LPS lacks any limulus amoebocyte lysate gelation activity. The highly simplified nature of LPSs from these organisms leads us to believe that they may represent either a primordial structure or an adaptation to the relatively higher salt and potentially growth-limiting phosphate levels in marine environments.Lipopolysaccharide (LPS) in the outer membrane layer is known to be the first line of defense against environmental factors in many gram-negative organisms, preventing lysis by complement, antimicrobial peptides and detergents (17, 21, 47). In proteobacteria, 3-deoxy-d-manno-octulosonic acid (Kdo), heptose, and phosphate are key parts of the conserved inner core of the LPS which connects the less-well-conserved outer core and sometimes an attached polysaccharide to the lipid A anchor. Why heptose is so well conserved is a mystery, but the prevalence of Kdo and phosphate may be related to the charge which they impart to the outer membrane and to their ability to bind divalent cations. The Kdo-phosphate metal binding center is capable of binding calcium with a dissociation constant (Kd) of 12 to 13 μM (28). This high-affinity binding of divalent cations is known to be necessary for the low permeability of LPS bilayers to some antibiotics (32), and it has been hypothesized that divalent cation cross-bridges may link LPS molecules on the bacterial cell surfaces of enterobacteria into a giant complex with very low membrane permeability (16).Though the LPSs of many proteobacteria are well characterized, the LPSs from cyanobacteria are much less studied. The cell envelopes of cyanobacteria resemble those of gram-negative bacteria structurally, consisting of a cytoplasmic membrane, a peptidoglycan layer, an outer membrane containing LPS, and sometimes additional structures (9, 14). Previous chemical analyses have shown the LPS of some cyanobacteria to be devoid of phosphate, Kdo, and heptose (11, 12, 42, 43). Given the lack of Kdo in these organisms as well as the fact that the lability of the Kdo-glucosamine ketosidic linkage allows for the mild acid hydrolysis of LPS to lipid A, it is perhaps not surprising that many attempts at hydrolysis of cyanobacterial LPS to lipid A have failed (for an example, see reference 29).Within the cyanobacteria, the genus Synechococcus represents a polyphyletic group of unicellular morphotypes. Synechococcus cells are found in both freshwater and marine environments. Organisms from group A Synechococcus and its sister taxon Prochlorococcus are extremely important primary producers in marine environments, with multiple “clades” similar to “species” described for other bacteria, dominating in different environments (3, 22). Unlike enterobacteria, which must frequently contend with an onslaught of host factors, members of the Synechococcus face grazing by protists and bacteriophages as their primary survival challenges.The genome of Synechococcus sp. strain CC9311 has been shown to be devoid of the genes for Kdo biosynthesis, while strain WH8102 has several putative genes for Kdo biosynthesis (18, 20). This suggests that the LPS of cyanobacteria could be significantly different from that of enteric bacteria and could show species/strain variation as well. A comparison of the structures of LPS from cyanobacteria and enterobacteria would afford a unique opportunity to understand which elements of LPS structure are essential to bacterial survival and which are adaptations to the environment in which the bacteria live. To further this understanding, we present here an analysis of the LPS structure from two strains of marine Synechococcus: an open-ocean-dwelling strain having the putative genes for Kdo biosynthesis (strain WH8102; clade III) and a coastal strain lacking these genes (strain CC9311; clade I). We further present two novel methods for producing lipid A from bacteria lacking the labile Kdo ketosidic linkage.  相似文献   

19.
A gas-liquid chromatographic-mass spectrometric (GLC-MS) method was applied to the detection of 3-deoxy-d-manno-2-octulosonic acid (Kdo), a constituent of bacterial lipopolysaccharide (LPS, endotoxin). Samples containing LPS were dried, methanolyzed with 2 M HCl in methanol at 60 degrees C for 1 h and acetylated with acetic anhydride and pyridine (1:1, v/v) solution at 100 degrees C for 30 min, then the products were analyzed by GLC-MS or GLC-MSMS. Four acetylated methylglycoside methyl ester derivatives of Kdo are formed in these conditions, namely one with pyranose ring (Kdo1), two derivatives in the furanose form (Kdo2 and 3) and one derivative of anhydro Kdo (Kdo4), as results from their mass fragmentation patterns. Synthetic Kdo produced mainly Kdo4 derivative, whereas Kdo1 of pyranose ring shape was the predominating derivative formed from LPS. The ion fragment of m/z 375 was selected for the specific detection of this Kdo1 derivative, which might be applied for the endotoxin determination. That approach was used for the analysis of preparations of bacteria, bacteriophages and samples of animal sera. In order to ensure the removal of phosphate substitutions from Kdo, methanolyzed samples can be treated with alkaline phosphatase (2.6 U, pH 9.2, 37 degrees C, 15 min), what was elaborated on Vibrio LPS preparation.  相似文献   

20.
Lipopolysaccharide (LPS) from Escherichia coli K12 W3100 is known to contain several glycoforms, and the basic structure has been investigated previously by methylation analyses (Holst, O. (1999) in Endotoxin in Health and Disease (Brade, H., Opal, S. M., Vogel, S. N., and Morrison, D., eds) pp. 115-154; Marcel Dekker, Inc., New York). In order to reveal dependences of gene activity and LPS structure, we have now determined the composition of de-O-acylated LPS by electrospray ionization-Fourier transform ion cyclotron-mass spectrometry (ESI-FT-MS) and identified 11 different LPS molecules. We have isolated the major glycoforms after de-O- and de-N-acylation and obtained four oligosaccharides that differed in their carbohydrate structure and phosphate substitution. The main oligosaccharide accounted for approximately 70% of the total and had a molecular mass of 2516 Da according to ESI-FT-MS. The dodecasaccharide structure (glycoform I) as determined by NMR was consistent with MS and compositional analysis. One minor oligosaccharide (5%) of the same carbohydrate structure did not contain the 4'-phosphate of the lipid A. Two oligosaccharides contained the same phosphate substitution but differed in their carbohydrate structure, one (5%) which contained an additional beta-D-GlcN in 1-->7 linkage on a terminal heptose residue (glycoform II) which was N-acetylated in LPS. A minor amount of a molecule lacking the terminal L-alpha-D-Hep in the outer core but otherwise identical to the major oligosaccharide (glycoform III) could only be identified by ESI-FT-MS of the de-O-acylated LPS. The other oligosaccharide (20%) contained an alpha-Kdo-(2-->4)-[alpha-l-Rha-(1-->5)]-alpha-Kdo-(2-->4)-alpha-Kdo branched tetrasaccharide connected to the lipid A (glycoform IV). This novel inner core structure was accompanied by a truncation of the outer core in which the terminal disaccharide L-alpha-D-Hep-(1-->6)-alpha-D-Glc was missing. The latter structure was identified for the first time in LPS and revealed that changes in the inner core structure may be accompanied by structural changes in the outer core.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号