首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During apoptotic stimulation, the serine threonine kinase, MEKK1, is cleaved into an activated 91 kDa kinase fragment. This cleavage is mediated by caspase 3 and leads to further caspase 3 activation and apoptosis. Forced expression of the 91 kDa kinase fragment induces apoptosis through changes in membrane potential of the mitochondria mediated by permeability transition pore opening. MEKK1 activation, however, fails to release cytochrome c from the mitochondria. Herein, we determined that overexpression of MEKK1 causes mitochondrial Smac/Diablo release correlating with MEKK1-induced apoptosis. Furthermore, using siRNA that lowers Smac/Diablo expression, MEKK1-induced apoptosis was significantly reduced. Mouse embryonic fibroblast cells lacking MEKK1 expression are also resistant to etoposide-induced mitochondrial Smac/Diablo release. In contrast, etoposide-induced mitochondrial cytochrome c release was not inhibited. MEKK1 also activates the MAP kinase JNK, but MEKK1-induced mitochondrial Smac/Diablo release and apoptosis are independent of MEKK1 mediated JNK activation. Taken together, release of Smac/Diablo from the mitochondria plays a role in MEKK1-induced apoptosis.  相似文献   

2.
MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD.  相似文献   

3.
Mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1) is an important component in the stress-activated protein kinase pathway. Glutathione S-transferase Mu 1-1 (GST M1-1) has now been shown to inhibit the stimulation of MEKK1 activity induced by cellular stresses such as UV and hydrogen peroxide. GST M1-1 inhibited MEKK1 activation in a manner independent of its glutathione-conjugating catalytic activity. In vitro binding and kinase assays revealed that GST M1-1 directly bound MEKK1 and inhibited its kinase activity. Co-immunoprecipitation analysis showed a physical association between endogenous GST M1-1 and endogenous MEKK1 in L929 cells. Overexpressed GST M1-1 interfered with the binding of MEKK1 to SEK1 in transfected HEK293 cells. Furthermore, GST M1-1 suppressed MEKK1-mediated apoptosis. Taken together, our results suggest that GST M1-1 functions as a negative regulator of MEKK1.  相似文献   

4.
MEK kinase 1 (MEKK1) is a 196-kDa enzyme that is involved in the regulation of the c-Jun N-terminal kinase (JNK) pathway and apoptosis. In cells exposed to genotoxic agents including etoposide and cytosine arabinoside, MEKK1 is cleaved at Asp874 by caspases. The cleaved kinase domain of MEKK1, itself, stimulates caspase activity leading to apoptosis. Kinase-inactive MEKK1 expressed in HEK293 cells effectively blocks genotoxin-induced apoptosis. Treatment of cells with taxol, a microtubule stabilizing agent, did not induce MEKK1 cleavage in cells, and kinase-inactive MEKK1 expression failed to block taxol-induced apoptosis. MEKK1 became activated in HEK293 cells exposed to taxol, but in contrast to etoposide-treatment, taxol failed to increase JNK activity. Taxol treatment of cells, therefore, dissociates MEKK1 activation from the regulation of the JNK pathway. Overexpression of anti-apoptotic Bcl2 blocked MEKK1 and taxol-induced apoptosis but did not block the caspase-dependent cleavage of MEKK1 in response to etoposide. This indicates Bcl2 inhibition of apoptosis is, therefore, downstream of caspase-dependent MEKK1 cleavage. The results define the involvement of MEKK1 in the induction of apoptosis by genotoxins but not microtubule altering drugs.  相似文献   

5.
MEKK1, a 196-kDa mitogen-activated protein kinase (MAPK) kinase kinase, generates anti-apoptotic signaling as a full-length protein but induces apoptosis when cleaved by caspases. Here, we show that caspase-dependent cleavage of MEKK1 relocalizes the protease-generated 91-kDa kinase fragment from a particulate fraction to a soluble cytoplasmic fraction. Relocalization of MEKK1 catalytic activity is necessary for the pro-apoptotic function of MEKK1. The addition of a membrane-targeting signal to the 91-kDa fragment inhibits caspase activation and the induction of apoptosis but does not change the activation of JNK, ERK, NFkappaB, or p300. These results identify the caspase cleavage of MEKK1 as a dynamic regulatory mechanism that alters the subcellular distribution of MEKK1, changing its function to pro-apoptotic signaling, which does not depend on the currently described MEKK1 effectors.  相似文献   

6.
MEK kinase 1 (MEKK1) is a 196-kDa protein that, in response to genotoxic agents, was found to undergo phosphorylation-dependent activation. The expression of kinase-inactive MEKK1 inhibited genotoxin-induced apoptosis. Following activation by genotoxins, MEKK1 was cleaved in a caspase-dependent manner into an active 91-kDa kinase fragment. Expression of MEKK1 stimulated DEVD-directed caspase activity and induced apoptosis. MEKK1 is itself a substrate for CPP32 (caspase-3). A mutant MEKK1 that is resistant to caspase cleavage was impaired in its ability to induce apoptosis. These findings demonstrate that MEKK1 contributes to the apoptotic response to genotoxins. The regulation of MEKK1 by genotoxins involves its activation, which may be part of survival pathways, followed by its cleavage, which generates a proapoptotic kinase fragment able to activate caspases. MEKK1 and caspases are predicted to be part of an amplification loop to increase caspase activity during apoptosis.  相似文献   

7.
MAPK/ERK kinase kinase 2 (MEKK2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of protein kinases. MAP3Ks are components of a three-tiered protein kinase pathway in which a MAP3K phosphorylates and activates a mitogen-activated protein kinase kinase (MAP2K), which in turn activates a mitogen-activated protein kinase (MAPK). We have previously identified residues within protein kinase subdomain X in the MAP3K, MEKK1, that are critical for its interaction with the MAP2K, MKK4, and MEKK1-induced MKK4 activation. We report here that kinase subdomain X also plays a critical role in MEKK2 activity. Select point mutations in subdomain X impair MEKK2 phosphorylation of the MAP2Ks, MKK7 and MEK5, abolish MEKK2-induced activation of the MAPKs, JNK1 and ERK5, and diminish MEKK2-dependent activation of an AP-1 reporter gene. Interestingly, the spectrum of mutations in subdomain X of MEKK2 that affects its activity is overlapping with but not identical to those that have effects on MEKK1. Thus, mutations in subdomain X differentially affect MEKK2 and MEKK1.  相似文献   

8.
9.
Glycogen synthase kinase 3beta (GSK3 beta) is implicated in many biological events, including embryonic development, cell differentiation, apoptosis, and insulin response. GSK3 beta has now been shown to induce activation of the mitogen-activated protein kinase kinase kinase MEKK1 and thereby to promote signaling by the stress-activated protein kinase pathway. GSK3 beta-binding protein blocked the activation of MEKK1 by GSK3 beta in human embryonic kidney 293 (HEK293) cells. Furthermore, co-immunoprecipitation analysis revealed a physical association between endogenous GSK3 beta and MEKK1 in HEK293 cells. Overexpression of axin1, a GSK3 beta-regulated scaffolding protein, did not affect the physical interaction between GSK3 beta and MEKK1 in transfected HEK293 cells. Exposure of cells to insulin inhibited the activation of MEKK1 by GSK3 beta, and this inhibitory effect of insulin was abolished by the phosphatidylinositol 3-kinase inhibitor wortmannin. Furthermore, MEKK1 activity under either basal or UV- or tumor necrosis factor alpha-stimulated conditions was reduced in embryonic fibroblasts derived from GSK3 beta knockout mice compared with that in such cells from wild-type mice. Ectopic expression of GSK3 beta increased both basal and tumor necrosis factor alpha-stimulated activities of MEKK1 in GSK3 beta(-/-) cells. Together, these observations suggest that GSK3 beta functions as a natural activator of MEKK1.  相似文献   

10.
Many cancers have constitutively activated NFkappaB, the elevation of which contributes to cancer cell resistance to chemotherapeutic agent-induced apoptosis. Although mitogen-activated protein kinase/extracellular-regulated kinase kinase kinase-3 (MEKK3) has been shown to participate in the activation of NFkappaB, its relations to apoptosis and cancer are unclear. In this study, we established cell model systems to examine whether stable expression of MEKK3 could lead to increased NFkappaB activity and confer resistance to apoptosis. In addition, we investigated in breast and ovarian cancers whether MEKK3 expression may be altered and correlated with aberrant NFkappaB activity. We show that stable cell lines overexpressing MEKK3 not only had elevated levels of NFkappaB binding activity but also were more responsive to cytokine stimulation. These stable cells showed 2-4-fold higher basal expression of Bcl-2 and xIAP than the parental cells. Consistent with this increased expression of cell survival genes, MEKK3 stable cells showed reduced activation of caspases 3 and 8 and poly(ADP-ribose) polymerase cleavage and dramatically increased resistance to apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand, doxorubicin, daunorubicin, camptothecin, and paclitaxel. Intriguingly, analysis of human breast and ovarian cancers showed that a significant fraction of these samples have elevated MEKK3 protein levels with corresponding increases in NFkappaB binding activities. Thus, our results established that elevated expression of MEKK3 appears to be a frequent occurrence in breast and ovarian cancers and that overexpression of MEKK3 in cells leads to increased NFkappaB activity and increased expression of cell survival factors and ultimately contributes to their resistance to apoptosis. As such, MEKK3 may serve as a therapeutic target to control cancer cell resistance to cytokine- or drug-induced apoptosis.  相似文献   

11.
The JNKs have been implicated in a variety of biological functions in mammalian cells, including apoptosis and the responses to stress. However, the physiological role of these pathways in the intracerebral hemorrhage (ICH) has not been fully elucidated. In this study, we identified a MAPK kinase kinase (MAPKKK), MEKK1, may be involved in neuronal apoptosis in the processes of ICH through the activation of JNKs. From the results of western blot, immunohistochemistry and immunofluorescence, we obtained a significant up-regulation of MEKK1 in neurons adjacent to the hematoma following ICH. Increasing MEKK1 level was found to be accompanied with the up-regulation of p-JNK 3, p53, and c-jun. Besides, MEKK1 co-localized well with p-JNK in neurons, indicating its potential role in neuronal apoptosis. What’s more, our in vitro study, using MEKK1 siRNA interference in PC12 cells, further confirmed that MEKK1 might exert its pro-apoptotic function on neuronal apoptosis through extrinsic pathway. Thus, MEKK1 may play a role in promoting the brain damage following ICH.  相似文献   

12.
MEKK2 and MEKK3 are two closely related mitogen-activated protein kinase (MAPK) kinase kinases. The kinase domains of MEKK2 and MEKK3 are nearly identical, although their N-terminal regulatory domains are significantly divergent. By yeast two-hybrid library screening, we have identified MEK5, the MAPK kinase in the big mitogen-activated protein kinase 1 (BMK1)/ERK5 pathway, as a binding partner for MEKK2. MEKK2 expression stimulates BMK1/ERK5 activity, the downstream substrate for MEK5. Compared with MEKK3, MEKK2 activated BMK1/ERK5 to a greater extent, which might correlate with a higher affinity MEKK2-MEK5 interaction. A dominant negative form of MEK5 blocked the activation of BMK1/ERK5 by MEKK2, whereas activation of c-Jun N-terminal kinase (JNK) was unaffected, showing that MEK5 is a specific downstream effector of MEKK2 in the BMK1/ERK5 pathway. Activation of BMK1/ERK5 by epidermal growth factor and H2O2 in Cos7 and HEK293 cells was completely blocked by a kinase-inactive MEKK3 (MEKK3kin(-)), whereas MEKK2kin(-) had no effect. However, in D10 T cells, expression of MEKK2kin(-) but not MEKK3kin(-) inhibited BMK1/ERK5 activity. Two-hybrid screening also identified Lck-associated adapter/Rlk- and Itk-binding protein (Lad/RIBP), a T cell adapter protein, as a binding partner for MEKK2. MEKK2 and Lad/RIBP colocalize at the T cell contact site with antigen-loaded presenting cells, demonstrating cotranslocation of MEKK2 and Lad/RIBP during T cell activation. MEKK3 neither binds Lad/RIBP nor is recruited to the T cell contact with antigen presenting cell. MEKK2 and MEKK3 are differentially associated with signaling from specific upstream receptor systems, whereas both activate the MEK5-BMK1/ERK5 pathway.  相似文献   

13.
MAPK/ERK kinase kinase 1 (MEKK1) is a mitogenactivated protein kinase kinase kinase (MAP3K) of the stress-induced JNK pathway. Once activated, MEKK1 phosphorylates the MAP2K MKK4, which in turn phosphorylates JNK. MEKK1 also has the capacity to activate IKK, the central protein kinase of the NF-kappa B pathway. The molecular determinants responsible for the ability of MEKK1 to recognize specific substrates are poorly understood. We report here that select point mutations in subdomain VIII of the protein kinase domain of MEKK1 (MEKK1 Delta) differentially affect its ability to activate MKK4 and IKK, and consequently AP1 and NF-kappa B reporter genes. Moreover, binding of MKK4 to MEKK1 Delta protects the latter from cleavage at an engineered protease target site in subdomain VIII. Collectively these results provide evidence that subdomain VIII of MEKK1 is involved not only in binding to, but also in discrimination of, protein substrates.  相似文献   

14.
Receptor-interacting protein (RIP), a death domain serine/threonine kinase, has been shown to play a critical role in tumor necrosis factor-alpha (TNF-alpha)-induced activation of the nuclear factor-kappaB signaling pathway. We demonstrate here that ectopically expressed RIP induces I-kappaB kinase-beta (IKKbeta) activation in intact cells and that RIP-induced IKKbeta activation can be blocked by a kinase-inactive form of MEKK1, MEKK1(K1253M). Interestingly, RIP physically associated with MEKK1 both in vitro and in vivo. RIP phosphorylated MEKK1 at Ser-957 and Ser-994. Our data also indicate that RIP induced the stimulation of MEKK1 but not MEKK1(S957A/S994A) in transfected cells. Furthermore, overexpressed MEKK1(S957A/S994A) inhibited the RIP-induced activation of both IKKbeta and nuclear factor-kappaB. We also demonstrated that the TNF-alpha-induced MEKK1 activation was defective in RIP-deficient Jurkat cells. Taken together, our results suggest that RIP phosphorylates and activates MEKK1 and that RIP is involved in TNF-alpha-induced MEKK1 activation.  相似文献   

15.
16.
Lu Z  Xu S  Joazeiro C  Cobb MH  Hunter T 《Molecular cell》2002,9(5):945-956
ERK1/2 MAP kinases are important regulators in cellular signaling, whose activity is normally reversibly regulated by threonine-tyrosine phosphorylation. In contrast, we have found that stress-induced ERK1/2 activity is downregulated by ubiquitin/proteasome-mediated degradation of ERK1/2. The PHD domain of MEKK1, a RING finger-like structure, exhibited E3 ubiquitin ligase activity toward ERK2 in vitro and in vivo. Moreover, both MEKK1 kinase activity and the docking motif on ERK1/2 were involved in ERK1/2 ubiquitination. Significantly, cells expressing ERK2 with the docking motif mutation were resistant to sorbitol-induced apoptosis. Therefore, MEKK1 functions not only as an upstream activator of the ERK and JNK through its kinase domain, but also as an E3 ligase through its PHD domain, providing a negative regulatory mechanism for decreasing ERK1/2 activity.  相似文献   

17.
18.
MAP kinase pathways comprise a group of parallel protein phosphorylation cascades, which are involved in signaling triggered by a variety of stimuli. Previous findings suggested that the ERK and the JNK pathways have opposing roles in regulating proliferation and survival or apoptosis and that apoptosis can be promoted by inhibiting the ERK pathway or by activation of the JNK pathway. In order to test this hypothesis and explore whether it can be exploited as a strategy for killing human cancer cells, we used gene transfer experiments with a range of cancer cell lines. We expressed the catalytic fragment of human MEKK1 to activate JNK and the Ras-binding domain (RBD) of Raf-1 to inhibit the Ras-ERK pathway. In addition, we designed several RBD-MEKK1 fusion proteins aiming to simultaneously activate the JNK and block the ERK pathway. We found that the MEKK1 proteins as well as the RBD alone could reduce colony formation in all cell lines. The survival time of MEKK1-expressing cells depended on the cell line. In HeLa cells, survival could be prolonged by inhibition of caspases but not by coexpression of the anti-apoptotic protein Bcl-2. Due to a lower kinase activity the RBD-MEKK1 fusion proteins were less effective in apoptosis induction than the MEKK1 kinase domain alone. Using mutant forms of Ras and Raf-1 we could show that the reduced kinase activity of RBD-MEKK1 fusion proteins was caused by binding to the Ras protein. The expression of lethal doses of MEKK1 resulted in a strong activation of all three major MAP kinase families JNK, ERK, and p38. Blocking these pathways either by coexpressing a dominant negative form of MKK4 or with inhibitors of MEK or p38 failed to inhibit apoptosis. This suggests that MEKK1 induces apoptosis by causing a general deregulation of MAP kinase signaling rather than by the activation of a single pathway.  相似文献   

19.
The c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) gene family and are essential for cell proliferation, differentiation, and apoptosis. Previously we found that activation of JNK in T-cells required costimulation of both T-cell receptor and auxiliary receptors such as CD28. In this study, we cloned a full-length human MEK kinase (MEKK) 2 cDNA from Jurkat T-cells and demonstrated that it was a major upstream MAPK kinase kinase for the JNK cascade in T-cells. The human MEKK2 cDNA encoded a polypeptide of 619 amino acids and was the human counterpart of the reported murine MEKK2. It was 94% homologous with human and murine MEKK3 at the catalytic domains and 60% homologous at the N-terminal noncatalytic region. Northern blot analysis showed that MEKK2 was ubiquitously expressed, with the highest level in peripheral blood leukocytes. In T cells, MEKK2 was found to be a strong activator of JNK but not of extracellular signal-regulated kinase MAPKs and to activate JNK-dependent AP-1 reporter gene expression. MEKK2 also synergized with anti-CD3 antibody to activate JNK in T cells, and stimulation of T cells led to induction of MEKK2 tyrosine phosphorylation. Significantly, the JNK activation induced by anti-CD3 and anti-CD28 antibodies, but not by 12-O-tetradecanoylphorbol-13-acetate and Ca(2+) ionophore A23187, was inhibited by dominant negative MEKK2 mutants. AP-1 and interleukin-2 reporter gene induction in T-cells was also inhibited by dominant negative MEKK2 mutants. Taken together, our results showed that human MEKK2 is a key signaling molecule for T-cell receptor/CD3-mediated JNK MAPK activation and interleukin-2 gene expression.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号