首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
2.
Hexose oxidase (D-hexose:O(2)-oxidoreductase, EC 1.1.3.5, HOX) normally found in the red alga Chondrus crispus was produced heterologously in different host systems. Full-length HOX polypeptide was produced in Escherichia coli, but no HOX activity could be detected. In contrast, active HOX could be produced in the methylotrophic yeast Pichia pastoris. Several growth physiological and genetic approaches for optimization of hexose oxidase production in P. pastoris were investigated. Our results indicate that specific growth conditions are essential in order to produce active HOX with the correct conformation. Furthermore, HOX seems to be activated by proteolytic cleavage of the full-length polypeptide chain into two fragments, which remain physically associated. Attempts to direct HOX to the extracellular compartment using the widely used secretion signals from Saccharomyces cerevisiae invertase or alpha-mating factor failed. However, we show in this study that HOX is transported out of P. pastoris via a hitherto unknown mechanism and that it is possible to enhance this secretion by mutagenesis from below the detection limit to at least 250 mg extracellular enzyme per liter.  相似文献   

3.
4.
Carrageenans extracted from gametophytic and sporophytic Chondrus crispus were analysed by hydrolysis, KCl fractionation and 1H NMR spectroscopy. The carrageenan from gametophytic plants is composed predominantly of two KCl insoluble fractions which contain kappa-carrageenan as the major component with 1-carrageenan and sulphated galactans as minor components. The precursor mu- and v-carrageenans were not found in the soluble fraction. The extract from sporophytic plants is composed mainly of a KCl soluble fraction which could be separated into 10 fractions by ion-exchange chromatography. The major component did not show a lambda-type structure but one of a xi-carrageenan.  相似文献   

5.
The apoflavodoxin produced by precipitation of Chondrus crispus flavodoxin with trichloroacetic acid migrates as a single molecular species on non-denaturing PAGE, but at a much lower Rm than the flavoprotein. Values of s and D were significantly lower than for the flavodoxin, but their substitution in the Svedberg equation indicated the molecular mass was closely similar to that of the flavodoxin. This was confirmed by meniscus-depletion sedimentation-equilibrium studies. The Stokes radius of the apoflavodoxin was 3.65 nm, compared with 2.33 nm for the flavodoxin, and estimates of frictional coefficient ratio suggested the apoprotein was in extended conformation compared with the roughly globular shape of the flavodoxin. The Ka for FMN binding was 2.8 x 10(8)M, and the electrophoretic and physicochemical properties of the reconstituted flavoprotein were closely similar to those of the native flavodoxin. FAD, iso-FMN and thio-FMN were also bound effectively, but methyl-FMN and riboflavin were bound only weakly, if at all. The reconstituted flavoproteins were active to various extents in mediating electron transfer from NADPH to cytochrome c catalysed by flavodoxin-NADP+ oxidoreductase, the highest activity being with the thio-FMN flavodoxin.  相似文献   

6.
7.
Carrageenans in the gametophytic and sporophytic stages of Chondrus crispus   总被引:2,自引:0,他引:2  
Summary The morphologically similar sporophytic and gametophytic plants of Chondrus crispus Stackhouse were examined and it was shown that the former contain -carrageenan. The gametophytes contain - and two additional carrageenans which are KCl-soluble and may comprise up to 25% of the total carrageenan. After alkaline modification, these KCl-soluble components were separated into a gel and a soluble carrageenan. The gel was indistinguishable from -carrageenan and presumably was derived from -carrageenan while the KCl-soluble fraction possessed a unique infrared spectrum easily distinguished from alkali-modified -carrageenan. This appears to represent a third carrageenan in the gametophytes.Our observations suggest that the biologically separate plants of C. crispus exhibit distinctive patterns of sulfation of their galactans. The sporophytes add SO4 2- at C2 of the precursor, whereas the gametophytes appear to add it principally at the available C4 positions. Both types of plant are capable of sulfating at C6 of the 4-linked galactose unit.Issued as NRC No. 13119.  相似文献   

8.
9.
In order to describe the detailed conformation of the oxidized flavodoxin from a eukaryotic red alga, Chondrus crispus, the crystal structure has been refined by a restrained least-squares method. The crystallographic R factor is 0.168 for 13,899 reflections with F greater than 2 sigma F between 6.0 and 1.8 A resolution. The refined model includes 173 amino acid residues, flavin mononucleotide (FMN) and 110 water molecules. The root-mean-square deviation in bond lengths from ideal values is 0.015 A, and the mean co-ordinate error is estimated to be 0.2 A. The FMN is located at the periphery of the molecule. The orientation of the isoalloxazine ring is such that the C-7 and C-8 methyl groups are exposed to solvent and the pyrimidine moiety is buried in the protein. Three peptide segments, T8-T13, T55-T58 and D94-C103, are involved in FMN binding. The first segment of T8-T13 enfolds the phosphate group of the FMN. The three oxygen atoms in the phosphate group form extensive hydrogen bonds with amide groups of the main chain and the O gamma atoms of the side-chains in this segment. T55 O and W56 N epsilon 1 in the second segment form hydrogen bonds with O-2 in the ribityl moiety and one of the oxygen atoms in the phosphate group, respectively. The O gamma H of T58 forms a hydrogen bond with the N-5 atom in the isoalloxazine ring, which is expected to be protonated in the semiquinone form. The third segment is in contact with the isoalloxazine ring. It appears that the hydrogen bond acceptor of the NH of Asp94 in the third segment is O-2 rather than N-1 in the isoalloxazine ring. The isoalloxazine ring is flanked by the side-chains of Trp56 and Tyr98; it forms an angle of 38 degrees with the indole ring of Trp56 and is almost parallel to the benzene ring of Tyr98. The environment of the phosphate group is conserved as in other flavodoxins whereas that of the isoalloxazine ring differs. The relationship between the hydrogen bond to the N-5 in the ring and the redox potential for the oxidized/semiquinone couple is discussed.  相似文献   

10.
A MeOH extract of cultivated Chondrus crispus showed dose-dependent nitric oxide (NO) inhibition of lipopolysaccharide-induced NO production in macrophage RAW264.7 cells. NO inhibition-guided fractionation of the extract led to identification of eicosapentaenoic acid (EPA, 1), arachidonic acid (AA, 2), lutein (3), and eight galactolipids as active components. Based on spectral analysis, the isolated galactolipids were identified as (2S)-1,2-bis-O-eicosapentaenoyl-3-O-β-d-galactopyranosylglycerol (4), (2S)-1-O-eicosapentaenoyl-2-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (5), (2S)-1-O-(6Z,9Z,12Z,15Z-octadecatetranoyl)-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (6), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (7), (2S)-1,2-bis-O-arachidonoyl-3-O-β-d-galactopyranosylglycerol (8), (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-β-d-galactopyranosylglycerol (9), (2S)-1-O-eicosapentaenoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (10), and (2S)-1-O-arachidonoyl-2-O-palmitoyl-3-O-(β-d-galactopyranosyl-6-1α-d-galactopyranosyl)-glycerol (11). All the isolated compounds showed significant NO inhibitory activity. This is the first report of the isolation and identification of individual galactolipids from C. crispus. Moreover, (2S)-1,2-bis-O-arachidonoyl ?3-O-β-d-galactopyranosylglycerol (8) is a novel compound.  相似文献   

11.
12.
13.
14.
R. T. Furbank  F. Rebeille 《Planta》1986,168(2):267-272
Dark respiration in the red macroalga Chondrus crispus was studied under a variety of conditions. The components of respiration were examined using selective inhibitors in order to characterise pathways of respiration and examine regulation of respiration in marine macroalgae.In comparison to respiration rates generally reported for higher-plant leaves and roots, the steady-state rate of O2 consumption by this alga, after 30 min dark pretreatment, was found to be quite low (three- to sixfold lower than in higher plants). The addition of uncoupler had only a slight effect on the basal respiration rate, indicating that in these conditions, substrate supply could be limiting respiration. The addition of KCN inhibited respiration by approx. 60%, indicating the presence of alternative oxidase activity. The coefficient of engagement of the alternative pathway (calculated from the data herein) showed that under normal conditions there was little participation of the alternative pathway in O2 consumption. The response of respiration to O2 tension was examined with and without inhibitors and the apparent K m was 17 to 21 M. The addition of KCN plus salicylhydroxamic acid almost completely blocked respiration in C. crispus. The hypothesis that respiratory substrate limits respiration in this alga was investigated by measuring respiration rates immediately after periods of photosynthetic activity. It was found that the respiration rate was dependent on the duration of the light period and could increase up to twofold. This stimulated rate of respiration declined in a first-order fashion during the next 20 to 30 min, finally reaching the basal, zero-order rate measured before illumination. These results strongly indicate a change in the nature of the respiratory substrates during this period. No change in the contribution of the alternative pathway of respiration could be detected following light pretreatment.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - SHAM salicyl hydroxamic acid  相似文献   

15.
16.
17.
The amino acid sequence of the constitutive flavodoxin from the red alga Chondrus crispus was determined from the analyses of peptide fragments derived by enzymic digestions of the carboxymethylated protein. This is the first sequence reported for a flavodoxin from a eukaryote. The protein is composed of 173 amino acid residues and is a member of the longer-chain group of flavodoxins. The extent of sequence homology to the three other flavodoxins in the group for which sequences are available is in the range 36-39%, with the most strongly conserved regions being those implicated in binding of the FMN, the redox-active prosthetic group. Nevertheless, Chondrus crispus flavodoxin stands apart in a number of respects, in particular the possession of an unusually high content of proline, with these residues distributed more or less regularly along the peptide chain.  相似文献   

18.
An enzyme catalyzing the conversion of μ- to κ-carrageenan has been demonstrated in both haploid and diploid plants of Chondrus crispus. It acts at the polymer level producing 3,6-anhydro-d-galactose with the stoichiometric release of sulfate. Two-thirds of the recoverable enzyme was associated with the 15,000g pellet most of which could be solubilized by passage through a Ribi Cell Fractionator. The enzyme precipitated between 2.65 and 4.24 m (NH4)2SO4 and was partly purified on DEAE-cellulose columns. This sulfohydrolase has a pH optimum near 6.5 and is inhibited by molybdate, phosphate, sulfate, tungstate, cysteine, ATP, GTP, UDP, and by λ-carrageenan. No activator was found. The enzyme showed a similar affinity for several preparations of μ-carrageenan and for the κ-carrageenase-resistant fraction from κ-carrageenan thus confirming that the latter is a biosynthetically unfinished molecule.  相似文献   

19.
Protoplasts were isolated from female gametophytes of Chondrus crispus (Stackh.) using commercial cellulase and various carrageenases prepared from marine bacteria. Depending on the nature of the donor tissue (apices or whole thallus, wild or cultivated strains), yields ranged from 1.0–8.5×108 protoplasts per gram of fresh tissue. Preincubating the tissue with a potassium chelator, Kryptofix 222, enhanced protoplast yields by 30–50 %. Based on staining with fluorescein diacetate most protoplasts were viable. A few protoplasts regenerated a cell wall and divided.  相似文献   

20.
The aim of this study was to determine how Chondrus crispus, a marine red macroalga, acquires the inorganic carbon (Ci) it utilizes for photosynthetic carbon fixation. Analyses of Ci uptake were done using silicone oil centrifugation (using multicellular fragments of thallus), infrared gas analysis, and gas chromatography. Inhibitors of carbonic anhydrase (CA), the band 3 anion exchange protein and Na+/K+ exchange were used in the study. It was found that: (a) C. crispus does not accumulate Ci internally above the concentration attainable by diffusion; (b) the initial Ci fixtion rate of C. crispus fragments saturates at approximately 3 to 4 millimolar Ci; (c) CA is involved in carbon uptake; its involvement is greatest at high HCO3 and low CO2 concentration, suggesting its participation in the dehydration of HCO3 to CO2; (d) C. crispus has an intermediate Ci compensation point; and (e) no evidence of any active or facilitated mechanism for the transport of HCO3 was detected. These data support the view that photosynthetic Ci uptake does not involve active transport. Rather, CO2, derived from HCO3 catalyzed by external CA, passively diffuses across the plasma membrane of C. crispus. Intracellular CA also enhances the fixation of carbon in C. crispus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号