首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of CREB-mediated gene expression by salt inducible kinase   总被引:1,自引:0,他引:1  
Salt inducible kinase (SIK) was identified as a molecule induced in the adrenal glands of rats fed with a high-salt diet. A major downstream of SIK is regulation of camp-responsive element (CRE)-dependent gene expression. SIK represses the activity of CRE-binding protein (CREB) by phosphorylating a CREB-specific co-activator transducer of regulated CREB activity (TORC). When TORC is dephosphorylated it activates CREB in a CREB-phosphorylation independent manner. The importance of the dephosphorylation of TORC has been suggested by the fact that a kinase inhibitor staurosporine induces dephosphorylation of TORC and upregulates the gene expression of CYP11A, CYP11B1, CYP11B2 and StAR in adrenocortical cells. The identification of SIK caused a stir in the field of CREB studies and led to disclosure of cascades hidden behind the classical mechanism for CREB activity.  相似文献   

2.
Autophosphorylation is an important mechanism by which protein kinases regulate their own biological activities. Salt inducible kinase 1 (SIK1) is a regulator in the feedback cascades of cAMP-mediated gene expression, while its kinase domain also features autophosphorylation activity. We provide evidence that Ser186 in the activation loop is the site of autophosphorylation and essential for the kinase activity. Ser186 is located at the +4 position of the critical Thr residue Thr182, which is phosphorylated by upstream kinases such as LKB1. The relationship between phosphorylation at Ser186 and at Thr182 in COS-7 cells indicates that the former is a prerequisite for the latter. Glycogen synthase kinase-3beta (GSK-3beta) phosphorylates Ser/Thr residues located at the fourth position ahead of the pre-phosphorylated Ser/Thr residues, and inhibitors of GSK-3beta reduce the phosphorylation at Thr182. The results of an in vitro reconstitution assay also indicate that GSK-3beta could be the SIK1 kinase. However, overexpression and knockdown of GSK-3beta in LKB1-defective HeLa cells suggests that GSK-3beta alone may not be able to phosphorylate or activate SIK1, indicating that LKB1 may play a crucial role by phosphorylating SIK1 at Thr182, possibly as an initiator of the autophosphorylation cascade, and GSK-3beta may phosphorylate SIK1 at Thr182 by recognizing the priming-autophosphorylation at Ser186 in cultured cells. This may also be the case for the other isoform SIK2, but not for SIK3.  相似文献   

3.
4.
5.
6.
7.
In fasted mammals, glucose homeostasis is maintained through induction of the cAMP response element-binding protein (CREB) coactivator transducer of regulated CREB activity 2 (TORC2), which stimulates the gluconeogenic program in concert with the forkhead factor FOXO1. Here we show that starvation also triggers TORC activation in Drosophila, where it maintains energy balance through induction of CREB target genes in the brain. TORC mutant flies have reduced glycogen and lipid stores and are sensitive to starvation and oxidative stress. Neuronal TORC expression rescued stress sensitivity as well as CREB target gene expression in TORC mutants. During refeeding, increases in insulin signaling inhibited TORC activity through the salt-inducible kinase 2 (SIK2)-mediated phosphorylation and subsequent degradation of TORC. Depletion of neuronal SIK2 increased TORC activity and enhanced stress resistance. As disruption of insulin signaling also augmented TORC activity in adult flies, our results illustrate the importance of an insulin-regulated pathway that functions in the brain to maintain energy balance.  相似文献   

8.
9.
10.
11.
The cAMP responsive element-binding protein (CREB) functions in a broad array of biological and pathophysiological processes. We found that salt-inducible kinase 2 (SIK2) was abundantly expressed in neurons and suppressed CREB-mediated gene expression after oxygen-glucose deprivation (OGD). OGD induced the degradation of SIK2 protein concomitantly with the dephosphorylation of the CREB-specific coactivator transducer of regulated CREB activity 1 (TORC1), resulting in the activation of CREB and its downstream gene targets. Ca(2+)/calmodulin-dependent protein kinase I/IV are capable of phosphorylating SIK2 at Thr484, resulting in SIK2 degradation in cortical neurons. Neuronal survival after OGD was significantly increased in neurons isolated from sik2(-/-) mice, and ischemic neuronal injury was significantly reduced in the brains of sik2(-)(/-) mice subjected to transient focal ischemia. These findings suggest that SIK2 plays critical roles in neuronal survival, is modulated by CaMK I/IV, and regulates CREB via TORC1.  相似文献   

12.
LKB1 is a serine-threonine protein kinase that, when inhibited, may result in unregulated cell growth and tumor formation. However, how LKB1 is regulated remains poorly understood. The aim of the present study was to define the upstream signaling events responsible for peroxynitrite (ONOO(-))-induced LKB1 activation. Exposure of cultured human umbilical vein endothelial cells to a low concentration of ONOO(-) (5 microM) significantly increased the phosphorylation of LKB1 at Ser(428) and protein kinase Czeta (PKCzeta) at Thr(410). These effects were accompanied by increased activity of the lipid phosphatase PTEN, decreased activity and phosphorylation (Ser(473)) of Akt, and induction of apoptosis. ONOO(-) enhanced Akt-Ser(473) phosphorylation in LKB1-deficient HeLa S3 cells or in HeLa S3 cells transfected with kinase-dead LKB1. Conversely, ONOO(-) inhibited Akt Ser(473) phosphorylation when wild type LKB1 were reintroduced in HeLa S3 cells. Further analysis revealed that PKCzeta directly phosphorylated LKB1 at Ser(428) in vitro and in intact cells, resulting in increased PTEN phosphorylation at Ser(380)/Thr(382/383). Finally, ONOO(-) enhanced PKCzeta nuclear import and LKB1 nuclear export. We conclude that PKCzeta mediates LKB1-dependent Akt inhibition in response to ONOO(-), resulting in endothelial apoptosis.  相似文献   

13.
14.
15.
16.
17.
18.
19.
DYRKs are a new family of dual-specificity tyrosine-regulated kinases with emerging roles in cell growth and development. Recently, we discovered that DYRK3 is expressed primarily in erythroid progenitor cells and modulates late erythropoiesis. We now describe 1) roles for the DYRK3 YTY signature motif in kinase activation, 2) the coupling of DYRK3 to cAMP response element (CRE)-binding protein (CREB), and 3) effects of DYRK3 on hematopoietic progenitor cell survival. Regarding the DYRK3 kinase domain, intactness of Tyr(333) (but not Tyr(331)) within subdomain loop VII-VIII was critical for activation. Tyr(331) plus Tyr(333) acidification (Tyr mutated to Glu) was constitutively activating, but kinase activity was not affected substantially by unique N- or C-terminal domains. In transfected 293 and HeLa cells, DYRK3 was discovered to efficiently stimulate CRE-luciferase expression, to activate a CREB-Gal4 fusion protein, and to promote CREB phosphorylation at Ser(133). Interestingly, this CREB/CRE response was also supported (50% of wild-type activity) by a kinase-inactive DYRK3 mutant as well as a DYRK3 C-terminal region and was blocked by protein kinase A inhibitors, suggesting functional interactions between protein kinase A and DYRK3. Finally, DYRK3 expression in cytokine-dependent hematopoietic FDCW2 cells was observed to inhibit programmed cell death. Thus, primary new insight into DYRK3 kinase signaling routes, subdomain activities, and possible biofunctions is provided.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号