首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An efficient and economic enhancer mix for PCR   总被引:2,自引:0,他引:2  
Polymerase chain reaction (PCR) has become a fundamental technique in molecular biology. Nonetheless, further improvements of the existing protocols are required to broaden the applicability of PCR for routine diagnostic purposes, to enhance the specificity and the yield of PCRs as well as to reduce the costs for high-throughput applications. One known problem typically reported in PCR experiments is the poor amplification of GC-rich DNA sequences. Here we designed and tested a novel effective and low-cost PCR enhancer, a concentration-dependent combination of betaine, dithiothreitol, and dimethyl sulfoxide that broadly enhanced the quantitative and/or qualitative output of PCRs. Additionally, we showed that the performances of this enhancer mix are comparable to those of commercially available PCR additives and highly effective with different DNA polymerases. Thus, we propose the routine application of this PCR enhancer mix for low- and high-throughput experiments.  相似文献   

2.
Nanoliter scale PCR with TaqMan detection.   总被引:6,自引:0,他引:6       下载免费PDF全文
We monitored PCR in volumes of the order of 10 nl in glass microcapillaries using a fluorescence energy transfer assay in which fluorescence increases if product is made due to template-dependent nucleolytic degradation of an internally quenched probe (TaqMan assay). This assay detected single starting template molecules in dilutions of genomic DNA. The results suggest that it may be feasible to determine the number of template molecules in a sample by counting the number of positive PCRs in a set of replicate reactions using terminally diluted sample. Since the assay system is closed and potentially automatable, it has promise for clinical applications.  相似文献   

3.
A major pitfall in most published genomic amplification methods for the detection and identification of human pathogens is that they do not include an internal amplification control in order to achieve an acceptable level of confidence for the absence of false-negative results. By applying composite primer technology, a single multiple internal amplification control DNA molecule was constructed to detect and quantify the hepatitis B virus, human polyomavirus, Epstein-Barr virus, Toxoplasma gondii and cytomegalovirus using real-time PCR. The multiple internal amplification control contains all forward and reverse primer binding regions targeted in the five distinct duplex PCRs, but with a unique probe hybridization site. Multiple internal amplification control detection sensitivity, assessed by Probit analysis, was 58 copies per PCR, associated with an extremely wide dynamic range (8 log(10) units). Moreover, in testing 614 patient samples, PCR inhibition occurred at a frequency of 0-8.8%. Similar multiple internal amplification controls for quantitative PCR-based assays could be designed to accommodate any infectious profiles in a particular institution as they are easy to make and inexpensive.  相似文献   

4.
With the increasing emergence of genome-wide analysis technologies (including comparative genomic hybridization (CGH), expression profiling on microarrays, differential display (DD), subtractive hybridization, and representational difference analysis (RDA)), there is frequently a need to amplify entire genomes or cDNAs by PCR to obtain enough material for comparisons among target and control samples. A major problem with PCR is that amplification occurs in a nonlinear manner and reproducibility is influenced by stray impurities. As a result, when two complex DNA populations are amplified separately, the quantitative relationship between two genes after amplification is generally not the same as their relation before amplification. Here we describe balanced PCR, a procedure that faithfully retains the difference among corresponding amplified genes by using a simple principle. Two distinct genomic DNA samples are tagged with oligonucleotides containing both a common and a unique DNA sequence. The genomic DNA samples are pooled and amplified in a single PCR tube using the common DNA tag. By mixing the two genomes, PCR loses the ability to discriminate among the different alleles and the influence of impurities is eliminated. The PCR-amplified pooled samples can be separated using the DNA tag unique to each individual genomic DNA sample. The principle of this method has been validated with synthetic DNA, genomic DNA, and cDNA applied on microarrays. By removing the bias of PCR, this method allows a balanced amplification of allelic fragments from two complex DNAs even after three sequential rounds of PCR. This balanced PCR approach should allow genetic analysis in minute laser-microdissected tissues, paraffin-embedded archived material, or single cells.  相似文献   

5.
PCR amplification of limited amounts of DNA template carries an increased risk of product redundancy and contamination. We use molecular barcoding to label each genomic DNA template with an individual sequence tag prior to PCR amplification. In addition, we include molecular ‘batch-stamps’ that effectively label each genomic template with a sample ID and analysis date. This highly sensitive method identifies redundant and contaminant sequences and serves as a reliable method for positive identification of desired sequences; we can therefore capture accurately the genomic template diversity in the sample analyzed. Although our application described here involves the use of hairpin-bisulfite PCR for amplification of double-stranded DNA, the method can readily be adapted to single-strand PCR. Useful applications will include analyses of limited template DNA for biomedical, ancient DNA and forensic purposes.  相似文献   

6.
Genome-scale design of PCR primers and long oligomers for DNA microarrays   总被引:2,自引:0,他引:2  
During the last years, the demand for custom-made cDNA chips/arrays as well as whole genome chips is increasing rapidly. The efficient selection of gene-specific primers/oligomers is of the utmost importance for the successful production of such chips. We developed GenomePRIDE, a highly flexible and scalable software for designing primers/oligomers for large-scale projects. The program is able to generate either long oligomers (40–70 bases), or PCR primers for the amplification of gene-specific DNA fragments of user-defined length. Additionally, primers can be designed in-frame in order to facilitate large-scale cloning into expression vectors. Furthermore, GenomePRIDE can be adapted to specific applications such as the generation of genomic amplicon arrays or the design of fragments specific for alternative splice isoforms. We tested the performance of GenomePRIDE on the entire genomes of Listeria monocytogenes (1584 gene-specific PCRs, 48 long oligomers) as well as of eukaryotes such as Schizosaccharomyces pombe (5006 gene-specific PCRs), and Drosophila melanogaster (21 306 gene-specific PCRs). With its computing speed of 1000 primer pairs per hour and a PCR amplification success of 99%, GenomePRIDE represents an extremely cost- and time-effective program.  相似文献   

7.
Quantitative detection of intracellular bacteria of the genus Chlamydia by the standard cell culture method is cumbersome and operator dependent. As an alternative, we adapted hot-start PCR to the glass capillary quantitative PCR format of the LightCycler. The optimized PCR was consistently more efficient than commercially available pre-assembled PCRs. Detection by quantitative PCR of as few as single copies of DNA of Chlamydia spp. was accomplished by SYBR Green fluorescence of the dsDNA product and by fluorescence resonance energy transfer (FRET) hybridization probes. The PCRs were 15-fold more sensitive than the cell culture quantitative assay of C. psittaci B577 infectious stock. The number of chlamydial genomes detected by C. psittaci B577 FRET PCR correlated well with cell culture determination of inclusion forming units (IFUs) (r = 0.96, P < 0.0008). When infected tissue samples were analyzed by cell culture and PCR, the correlation coefficient between IFUs and chlamydial genomes was higher with C. psittaci B577 FRET PCR (r = 0.90, P < 0.0004) than with Chlamydia omp1 SYBR Green PCR (r = 0.85, P < 0.002).  相似文献   

8.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

9.
The methods of molecular biology allow for analyzing the methylation pattern in the whole genome and in particular genes. We differentiate methylated sequences from unmethylated ones by means of cutting the genomic template with methylation-sensitive restriction enzymes or by sodium bisulfite DNA modification. Chemical modification precedes most quantitative and qualitative PCR techniques: MS-PCR, MS-nested PCR, Real-Time PCR, QAMA, HeavyMethyl, MSHRM. Restriction enzymes, on the other hand, may be used together with PCR or hybridisation methods (Southern blot and microarrays). PCRs are conducted with primers specific for methylated and unmethylated sequences and sometimes, similarly to hybridisation techniques, with specifically labeled probes or dyes intercalating to double-stranded nucleic acids. The most advanced methylation detection techniques (MALDI-TOF MS and HPLC) significantly reduce the amount of biological material used for tests, but they require specialist equipment.  相似文献   

10.
玉米花粉粒直接PCR技术研究   总被引:3,自引:0,他引:3  
利用成熟花粉粒制成悬液作为玉米基因组DNA模板直接进行PCR扩散,研究了不同花粉悬液浓度、花粉上清液对RAPD-PCR的影响,结果表明:花粉悬液浓度在4μg/50μl以上,用10碱基随机引物均能扩增出较清晰的PCR条带,且与叶片按改良Guidet法提取的DNA模板扩增的RAPD带型无明显差异,利用花粉悬液能有效地进行基因组DNA变异的RAPD分析和基因SCAR标记的检测。玉米单株花粉量可用于数百次以上的PCR反应,较叶片等植物组织用常规法提取DNA快速、简便、廉价,可有效地应用于以PCR为基础的植物基因组DNA变异,农艺性状的RAPD标记和分子标记辅助育种的研究。  相似文献   

11.
The tagged microarray marker (TAM) method allows high-throughput differentiation between predicted alternative PCR products. Typically, the method is used as a molecular marker approach to determining the allelic states of single nucleotide polymorphisms (SNPs) or insertion-deletion (indel) alleles at genomic loci in multiple individuals. Biotin-labeled PCR products are spotted, unpurified, onto a streptavidin-coated glass slide and the alternative products are differentiated by hybridization to fluorescent detector oligonucleotides that recognize corresponding allele-specific tags on the PCR primers. The main attractions of this method are its high throughput (thousands of PCRs are analyzed per slide), flexibility of scoring (any combination, from a single marker in thousands of samples to thousands of markers in a single sample, can be analyzed) and flexibility of scale (any experimental scale, from a small lab setting up to a large project). This protocol describes an experiment involving 3,072 PCRs scored on a slide. The whole process from the start of PCR setup to receiving the data spreadsheet takes 2 d.  相似文献   

12.
13.
Electrophoresis continues to be a mainstay in molecular genetic laboratories for checking, sizing and separating both PCR products, nucleic acids derived from in vivo or in vitro sources and nucleic acid-protein complexes. Many genomic and genetic applications demand high throughput, such as the checking of amplification products from many loci, from many clones, from many cell lines or from many individuals at once. These applications include microarray resource development and expression analysis, genome mapping, library and DNA bank screening, mutagenesis experiments and single nucleotide polymorphism (SNP) genotyping. PCR hardware compatible with industry standard 96 and 384 well microplates is commonplace. We have previously described a simple system for submerged horizontal 96 and 192 well polyacrylamide or agarose microplate array diagonal gel electrophoresis (MADGE) which is microplate compatible and suitable for PCR checking, SNP typing (restriction fragment length polymorphism or amplification refractory mutation system), microsatellite sizing and identification of unknown mutations. By substantial redesign of format and operations, we have derived an efficient 'dry' gel system that enables direct 96 pin manual transfer from PCR or other reactions in microplates, into 768 or 384 well gels. Combined with direct electrode contact in clamshell electrophoresis boxes which plug directly to contacts in a powered stacking frame and using 5-10 min electrophoresis times, it would be possible (given a sufficient supply of PCRs for examination) for 1 million gel tracks to be run per day for a minimal hardware investment and at minimal reagent costs. Applications of this system for PCR checking and SNP genotyping are illustrated.  相似文献   

14.
MOTIVATION: Methylation of cytosines in DNA plays an important role in the regulation of gene expression, and the analysis of methylation patterns is fundamental for the understanding of cell differentiation, aging processes, diseases and cancer development. Such analysis has been limited, because technologies for detailed and efficient high-throughput studies have not been available. We have developed a novel quantitative methylation analysis algorithm and workflow based on direct DNA sequencing of PCR products from bisulfite-treated DNA with high-throughput sequencing machines. This technology is a prerequisite for success of the Human Epigenome Project, the first large genome-wide sequencing study for DNA methylation in many different tissues. Methylation in tissue samples which are compositions of different cells is a quantitative information represented by cytosine/thymine proportions after bisulfite conversion of unmethylated cytosines to uracil and PCR. Calculation of quantitative methylation information from base proportions represented by different dye signals in four-dye sequencing trace files needs a specific algorithm handling imbalanced and overscaled signals, incomplete conversion, quality problems and basecaller artifacts. RESULTS: The algorithm we developed has several key properties: it analyzes trace files from PCR products of bisulfite-treated DNA sequenced directly on ABI machines; it yields quantitative methylation measurements for individual cytosine positions after alignment with genomic reference sequences, signal normalization and estimation of effectiveness of bisulfite treatment; it works in a fully automated pipeline including data quality monitoring; it is efficient and avoids the usual cost of multiple sequencing runs on subclones to estimate DNA methylation. The power of our new algorithm is demonstrated with data from two test systems based on mixtures with known base compositions and defined methylation. In addition, the applicability is proven by identifying CpGs that are differentially methylated in real tissue samples.  相似文献   

15.
Protocols are presented for preparing DNA from a genomic library in λ phage and for synthesizing genomic fragments using PCR with nested vector- and gene-specific primers and linker-primers. Library DNA, isolated fromE. coli liquid lysates by a simple protocol, is used as template in PCR following a commercial protocol. The method produces library DNA sufficient for several hundred PCRs, incorporates nested primers to reduce nonspecific product formation, and enables the synthesis of linker-containing DNA fragments containing selected restriction sites to simplify subsequent cloning. The isolation of 5′ upstream sequences of three different arabidopsis genes by this methodod is described.  相似文献   

16.
A novel mapping method based on touchdown PCR was developed for identifying a transposon insertion site in genomic DNA using a hybrid consensus-degenerate primer in combination with a specific primer that anneals to the transposon. The method was tested using Xanthomonas citri transposon mutants. PCR products contained adjacent DNA regions that belonged to both X. citri genomic DNA and the transposon. Products were directly sequenced from PCRs using only the specific primer. Different PCR conditions were tested, and the optimized reaction parameters that increased product yields and specificity are described. Best results were obtained with the HIB17 hybrid primer, which is a 25-mer oligonucleotide having degenerate bases at 6 different positions within the last 12 bases at the 3' end. An X. citri mutants library was produced by random transposition using the EZ::TN transposon, and we identified the insertion sites within the genome of 90 mutants. Insertions were found within both the chromosomal and the plasmid DNA in these X. citri mutants. Restriction mapping and Southern blot analysis confirmed the insertion sites for eight randomly chosen mutants. This method is a very useful tool for large-scale characterization of mutants in functional genomics studies.  相似文献   

17.
A chip was developed to store DNA for medical research. The optional restriction site fixed on the chip can randomly ligate with whole human genomic DNA treated by the corresponding restriction enzyme. PCR can then use the chip as template DNA. Moreover, a chip fixing two restriction sites (e.g. EcoRI and HindIII) showed the amplification by PCR for any location of genomic DNA. Repetitive PCRs have confirmed that a DNA chip can be stored by at –4 °C for 2 years.  相似文献   

18.

Backgound

Y-chromosomal microdeletions (YCMD) are one of the major genetic causes for non-obstructive azoospermia. Genetic testing for YCMD by multiplex polymerase chain reaction (PCR) is an established method for quick and robust screening of deletions in the AZF regions of the Y-chromosome. Multiplex PCRs have the advantage of including a control gene in every reaction and significantly reducing the number of reactions needed to screen the relevant genomic markers.

Principal Findings

The widely established “EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions (2004)” were used as a basis for designing a real-time multiplex PCR system, in which the YCMD can simply be identified by their melting points. For this reason, some AZF primers were substituted by primers for regions in their genomic proximity, and the ZFX/ZFY control primer was exchanged by the AMELX/AMELY control primer. Furthermore, we substituted the classical SybrGreen I dye by the novel and high-performing DNA-binding dye EvaGreen™ and put substantial effort in titrating the primer combinations in respect to optimal melting peak separation and peak size.

Significance

With these changes, we were able to develop a platform-independent and robust real-time based multiplex PCR, which makes the need for amplicon identification by electrophoretic sizing expendable. By using an open-source system for real-time PCR analysis, we further demonstrate the applicability of automated melting point and YCMD detection.  相似文献   

19.
Real-time PCR: what relevance to plant studies?   总被引:18,自引:0,他引:18  
The appearance of genetically modified organisms on the food market a few years ago, and the demand for more precise and reliable techniques to detect foreign (transgenic or pathogenic) DNA in edible plants, have been the driving force for the introduction of real-time PCR techniques in plant research. This was followed by numerous fundamental research applications aiming to study the expression profiles of endogenous genes and multigene families. Since then, the interest in this technique in the plant scientist community has increased exponentially. This review describes the technical features of quantitative real-time PCR that are especially relevant to plant research, and summarizes its present and future applications.  相似文献   

20.
Accurate genotyping of complex systems, such as the major histocompatibility complex (MHC) often requires simultaneous analysis of multiple co-amplifying loci. Here we explore the utility of the massively parallel 454 sequencing method as a universal tool for genotyping complex MHC systems in nonmodel vertebrates. The power of this approach stems from the use of tagged polymerase chain reaction (PCR) primers to identify individual amplicons which can be simultaneously sequenced to the arbitrarily chosen coverage. However, the error-prone sequencing technology poses considerable challenges as it may be difficult to discriminate between sequencing errors and true rare alleles; due to complex nature of artefacts and errors, efficient quality control is required. Nevertheless, our study demonstrates the parallel 454 sequencing can be an efficient genotyping platform for MHC and provides an alternative to classical genotyping methods. We introduced procedures to identify the threshold that can be used to reduce number of genotyping errors by eliminating most of artefactual alleles (AA) representing PCR or sequencing errors. Our procedures are based on two expectations: first, that AA should be relatively rare, both overall and on per-individual basis, and second, that most AA result from errors introduced to sequences of true alleles. In our data set, alleles with an average per-individual frequency below 3% most likely represented artefacts. This threshold will vary in other applications according to the complexity of the genotyped system. We strongly suggest direct assessment of genotyping error in every experiment by running a fraction of duplicates: individuals amplified in independent PCRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号