首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Annexin I is an abundant cytosolic protein in human neutrophils. Besides its intracellular location, annexin I is found as an extracellular protein and the pathway for secretion has been of interest since the protein lacks a signal sequence for secretion. It was recently shown that annexin I is stored in the secretory gelatinase granules of human neutrophils, suggesting that the protein might be released through a granule mobilisation and fusion process resembling classical secretion. In this study we have determined the intracellular localisation of annexin I in human neutrophils using subcellular fractionation, protein separation by SDS-PAGE and immunoblotting, and show that virtually all annexin I is localised in the cell cytosol.  相似文献   

2.
Nabokina SM  Revin VV 《Biofizika》2002,47(5):869-871
The ability of neutrophil cytosol to induce the aggregation of gelatinase granules of human neutrophils was studied. The cytosol was found to induce the Ca(2+)-dependent aggregation of granules. The stimulatory effect of cytosol was considerably reduced in the presence of the monoclonal antibody recognizing annexin I. Annexin I is a mediator of Ca(2+)-dependent aggregation of gelatinase granules and probably participate in granule secretion.  相似文献   

3.
Intracellular location of T200 and Mo1 glycoproteins in human neutrophils   总被引:12,自引:0,他引:12  
Mo1 (CD11b), a glycoprotein heterodimer that is involved in cellular adhesion processes and functions as the C3bi receptor of human myeloid cells, and T200 (CD45), a panleukocyte glycoprotein family whose function is still not well understood, increased their expression in the plasma membrane of human neutrophils after exposure to various stimuli which induce degranulation, such as formylmethionylleucylphenylalanine or calcium ionophore A23187. This increment in the expression of both molecules shows a good correlation with the release to the extracellular environment of gelatinase, a marker for an intracellular organelle named "tertiary granule" (Mollinedo, F., and Schneider, D. L. (1984) J. Biol. Chem. 259, 7143-7150). Flow cytometry studies indicate that at least 50% of the total Mo1 and T200 molecules are located in intracellular organelles. Furthermore, the subcellular distribution of Mo1 and T200 glycoproteins in resting human neutrophils was investigated by immunoprecipitation of the radiolabeled membrane proteins obtained from the distinct subcellular fractions. Both Mo1 and T200 were mainly localized in tertiary or specific intracellular granules, which were resolved from the azurophilic granules as well as from the cell membrane fraction. These findings suggest that the mobilization of intracellular Mo1 and T200 to the plasma membrane may regulate early events occurring upon neutrophil activation.  相似文献   

4.
The mammalian lectin galectin-3 is a potent stimulus of human neutrophils, provided that the receptor(s) for the lectin has been mobilized to the cell surface before activation. We have recently shown that the receptors for galectin-3 are stored in intracellular mobilizable granules. Here we show supportive evidence for this in that DMSO-differentiated (neutrophil-like) HL-60 cells, which lack gelatinase and specific granules, are nonresponsive when exposed to galectin-3. Neutrophil granules were subsequently used for isolation of galectin-3 receptors by affinity chromatography. Proteins eluted from a galectin-3-Sepharose column by lactose were analyzed on SDS-polyacrylamide gels and showed two major bands of 100 and 160 kDa and a minor band of 120 kDa. By immunoblotting, these proteins were shown to correspond to CD66a (160 kDa), CD66b (100 kDa), and lysosome-associated membrane glycoprotein-1 and -2 (Lamp-1 and -2; 120 kDa). The unresponsive HL-60 cells lacked the CD66 Ags but contained the Lamps, implying that neutrophil CD66a and/or CD66b may be the functional galectin-3 receptors. This conclusion was supported by the subcellular localization of the CD66 proteins to the gelatinase and specific granules in resting neutrophils.  相似文献   

5.
We have examined the role of the R-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) synaptobrevin-2/vesicle-associated membrane protein (VAMP)-2 in neutrophil exocytosis. VAMP-2, localized in the membranes of specific and gelatinase-containing tertiary granules in resting human neutrophils, resulted translocated to the cell surface following neutrophil activation under experimental conditions that induced exocytosis of specific and tertiary granules. VAMP-2 was also found on the external membrane region of granules docking to the plasma membrane in activated neutrophils. Specific Abs against VAMP-2 inhibited Ca(2+) and GTP-gamma-S-induced exocytosis of CD66b-enriched specific and tertiary granules, but did not affect exocytosis of CD63-enriched azurophilic granules, in electropermeabilized neutrophils. Tetanus toxin disrupted VAMP-2 and inhibited exocytosis of tertiary and specific granules. Activation of neutrophils led to the interaction of VAMP-2 with the plasma membrane Q-SNARE syntaxin 4, and anti-syntaxin 4 Abs inhibited exocytosis of specific and tertiary granules in electropermeabilized neutrophils. Immunoelectron microscopy showed syntaxin 4 on the plasma membrane contacting with docked granules in activated neutrophils. These data indicate that VAMP-2 mediates exocytosis of specific and tertiary granules, and that Q-SNARE/R-SNARE complexes containing VAMP-2 and syntaxin 4 are involved in neutrophil exocytosis.  相似文献   

6.
Human neutrophils were homogenized and fractionated on a continuous sucrose gradient to assess the subcellular location of acetyl-CoA: lyso-PAF acetyltransferase and of newly synthesized PAF (1-0-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Acetyltransferase activity showed two subcellular locations in resting neutrophils. One of them cofractionated with plasma membrane and endoplasmic reticulum markers, whereas another major location corresponded to a region of the gradient enriched in tertiary granules. No PAF was detected in resting neutrophils, but PAF synthesis was induced by cell stimulation with ionophore A23187. Most of the newly synthesized PAF was found cell-associated, showing a bimodal subcellular distribution similar to that found for acetyltransferase activity in activated cells. PAF and acetyltransferase were located in a light membrane fraction, enriched in plasma membrane and endoplasmic reticulum, and in an ill-defined region of the gradient between the specific and azurophilic granules in A23187-stimulated cells. These data support the involvement of the acetyltransferase pathway in the synthesis of PAF induced by ionophore A23187, and demonstrate the synthesis and accumulation of newly synthesized PAF in a light membrane fraction as well as in an intracellular dense organelle upon neutrophil activation.  相似文献   

7.
Phagocytic leukocytes contain an activatable NADPH:O2 oxidoreductase. Components of this enzyme system include cytochrome b558, and three soluble oxidase components (SOC I, SOC II, and SOC III) found in the cytosol of resting cells. Previously, we found that SOC II copurifies with, and is probably identical to, a 47-kDa substrate of protein kinase C. In the present study we investigated the change in location of several of these oxidase components after activation of intact neutrophils with phorbol myristate acetate (PMA) and separation of subcellular fraction on sucrose density gradients. On Western blots with fractions of resting cells, the alpha subunit of cytochrome b558 was detected with a monoclonal antibody as a doublet of Mr 22,000 and 24,000 in the specific granules and as a single band of Mr 24,000 in the plasma membrane. PMA induced an increase of cytochrome b558 in the plasma membrane, including the Mr 22,000 band. PMA also induced translocation of the 47-kDa protein from the cytosol to the membrane fraction, as revealed by in vitro phosphorylation experiments. When NADPH oxidase activity was determined in a cell-free system in the presence of sodium dodecyl sulfate and GTP with plasma membranes from resting cells, cytosol from PMA-treated cells was deficient compared with cytosol from resting cells. This deficiency could be partially restored by the addition of SOC I. Concomitantly, SOC I activity appeared in the plasma membranes of PMA-treated cells. These studies support the hypothesis that PMA stimulation of neutrophils results in assembly of oxidase components from the cytosol and the specific granules in the plasma membrane with subsequent expression of NADPH oxidase activity.  相似文献   

8.
Summary Subcellular fractionation studies in resting human neutrophils indicated a bimodal distribution for cytochrome b. A. major peak of cytochrome b co-sedimented with gelatinase under different experimental conditions. This localization was partially overlapped with specific granules (using lysozyme and lactoferrin as specific granule markers), but clearly resolved from azurophilic granules, plasma membrane, mitochondria, as well as from a novel alkaline phosphatase-rich intracellular organelle. A minor localization of cytochrome b was found in fractions enriched in both the plasma membrane marker 5-nucleotidase and alkaline phosphatase. A significant portion of ubiquinone cell content co-fractionated with the gelatinase-containing granules. After phorbol myristate acetate (PMA)-cell stimulation, cytochrome b was mobilized to fractions showing respiratory burst activity and enriched in 5-nucleotidase activity. This mobilization paralleled secretion of gelatinase and lysozyme to the extracellular medium. Furthermore, neutrophil stimulation with fluoride in the absence of cytochalasin B induced release of gelatinase and generation of superoxide anion with only minimal release of lysozyme. Preincubation of cells with the anion channel blocker 4,4-diisothiocyanostilbene-2,2-disulfonic acid (DIDS) prevented lysozyme release, but had only a minor effect on the release of gelatinase and did not inhibit the superoxide anion generation elicited by N-formyl-methionyl-leucyl-phenylalanine or PMA. These results suggest a main location of cytochrome b in mobilizable gelatinase-containing granules, which can constitute a subpopulation of specific granules. Furthermore, these findings show that the gelatinase-containing granule is functionally involved in the respiratory burst in neutrophils and that membrane fusion between plasma membrane and the gelatinase-containing granule occurs during activation of cells.Abbreviations DIDS 4,4-diisothiocyanostilbene-2,2-disulfonic acid - FMLP N-formyl-methionyl-leucyl-phenylalanine - PMA 4-phorbol, 12-myristate, 13-acetate  相似文献   

9.
Myeloid-related protein-14 is a p38 MAPK substrate in human neutrophils   总被引:1,自引:0,他引:1  
The targets of the p38 MAPK pathway that mediate neutrophil functional responses are largely unknown. To identify p38 MAPK targets, a proteomic approach was applied in which recombinant active p38 MAPK and [(32)P]ATP were added to lysates from unstimulated human neutrophils. Proteins were separated by two-dimensional gel electrophoresis, and phosphoproteins were visualized by autoradiography and identified by MALDI-TOF. Myeloid-related protein-14 (MRP-14) was identified as a candidate p38 MAPK substrate. MRP-14 phosphorylation by p38 MAPK was confirmed by an in vitro kinase reaction using purified MRP-14/MRP-8 complexes. The site of MRP-14 phosphorylation by p38 MAPK was identified by tandem mass spectrometry and site-directed mutagenesis to be Thr(113). MRP-14 phosphorylation by p38 MAPK in intact neutrophils was confirmed by [(32)P]orthophosphate loading, followed by fMLP stimulation in the presence and absence of a p38 MAPK inhibitor, SB203580. Confocal microscopy of Triton X-100 permeabilized neutrophils showed that a small amount of MRP-14 was associated with cortical F-actin in unstimulated cells. fMLP stimulation resulted in a p38 MAPK-dependent increase in MRP-14 staining at the base of lamellipodia. By immunoblot analysis, MRP-14 was present in plasma membrane/secretory vesicle fractions and gelatinase and specific granules, but not in azurophil granules. The amount of MRP-14 associated with plasma membrane/secretory vesicle and gelatinase granule fractions increased after fMLP stimulation in a p38 MAPK-dependent manner. Direct phosphorylation of the MRP-14/MRP-8 complex by p38 MAPK increased actin binding in vitro by 2-fold. These results indicate that MRP-14 is a potential mediator of p38 MAPK-dependent functional responses in human neutrophils.  相似文献   

10.
We report the novel observation that engagement of β2 integrins on human neutrophils is accompanied by increased levels of the small GTPases Rap1 and Rap2 in a membrane-enriched fraction and a concomitant decrease of these proteins in a granule-enriched fraction. In parallel, we observed a similar time-dependent decrease of gelatinase B (a marker of specific and gelatinase B-containing granules) but not myeloperoxidase (a marker of azurophil granules) in the granule fraction, and release of lactoferrin (a marker of specific granules) in the extracellular medium. Furthermore, inhibition of Src tyrosine kinases, or phosphoinositide 3-kinase with PP1 or LY294002, respectively, blocked β2 integrin-induced degranulation and the redistribution of Rap1 and Rap2 to a membrane-enriched fraction. Consequently, the β2 integrin-dependent exocytosis of specific and gelatinase B-containing granules occurs via a Src tyrosine kinase/phosphoinositide 3-kinase signaling pathway and is responsible for the translocation of Rap1 and Rap2 to the plasma membrane in human neutrophils.  相似文献   

11.
After phagocytosis, killing and digestion of ingested microorganisms depend on fusion of phagocytic vesicle membranes with membranes of intracellular vesicles (azurophil and specific granules). There is considerable evidence that phagosome-granule membrane fusion is regulated by transient increases in intracellular ionized Ca2+. In previous studies, we found that a cytosolic Ca2(+)-dependent membrane-binding protein, annexin III, represents over 1% of the total protein of human neutrophils and promotes tight contact between membranes of isolated specific granules in vitro. To determine whether annexin III localizes to the region of phagosome-granule membrane fusion in vivo, we used a monospecific polyclonal antibody to stain fixed, permeabilized neutrophils that had ingested opsonized yeast. We found that annexin III concentrates in the region surrounding the phagosome. Annexin III was concentrated ninefold in the periphagosomal region compared with the cell body, as demonstrated by laser scanning confocal microscopy. Periphagosomal translocation of annexin III occurred whether yeast were opsonized with IgG, complement, or both, and persisted for at least 1 h after phagocytosis. This is not a general phenomenon, inasmuch as calmodulin was as abundant in the cell body as in the periphagosomal region. These findings imply that annexin III plays a specialized role in the metabolic and structural events that accompany phagocytosis.  相似文献   

12.
Leukolysin, originally isolated from human leukocytes, is the sixth member of the membrane-type matrix metalloproteinase (MT-MMP) subfamily with a potential glycosylphosphatidylinositol (GPI) anchor. To understand its biological functions, we screened subpopulations of leukocytes and localized the expression of leukolysin at the mRNA level to neutrophils. Polyclonal and mono-specific antisera raised against a synthetic peptide from its hinge region recognized a major protein species at 56 kDa and several minor forms between 38 and 45 kDa in neutrophil lysates. In resting neutrophils, leukolysin is distributed among specific granules ( approximately 10%), gelatinase granules ( approximately 40%), secretory vesicles ( approximately 30%), and the plasma membrane ( approximately 20%), a pattern distinct from that of neutrophil MMP-8 and MMP-9. Consistent with its membrane localization and its reported GPI anchor, leukolysin partitions into the detergent phase of Triton X-114 and can be released from intact resting neutrophils by glycosylphosphatidylinositol-specific phospholipase C. Phorbol myristate acetate stimulates neutrophils to discharge 100% of leukolysin from specific and gelatinase granules and approximately 50% from the secretory vesicles and plasma membrane, suggesting that leukolysin can be mobilized by physiological signals to the extracellular milieu as a soluble enzyme. Indeed, interleukin 8, a neutrophil chemoattractant, triggered a release of approximately 85% of cellular leukolysins by a process resistant to a mixture of proteinase inhibitors, including aprotinin, BB-94, pepstatin, and E64. Finally, purified recombinant leukolysin can degrade components of the extracellular matrix. These results not only establish leukolysin as the first neutrophil-specific MT-MMP but also implicate it as a cytokine/chemokine-regulated effector during innate immune responses or tissue injury.  相似文献   

13.
We have earlier shown that an N-terminal truncated annexin I molecule, annexin I(des1-8), is generated in human neutrophils through cleavage by a membrane localized metalloprotease. The truncated protein showed differences in membrane binding among the neutrophil granule populations as compared to full-length annexin I. In this study, we investigated the cleavage capabilities of isolated neutrophil secretory vesicles and plasma membrane, and the binding of full-length annexin I and annexin I(des1-8) to these membrane fractions. Translocations were performed in vitro to secretory vesicles and plasma membrane, respectively, at different Ca(2+) concentrations. We show that the annexin I-cleaving membrane localized metalloprotease is present both in the secretory vesicles and the plasma membrane. The N-terminal truncation of annexin I gives rise to a molecule with a decreased Ca(2+) requirement for binding, both to secretory vesicles and plasma membrane. There was, thus, no difference in binding of either full-length annexin I or annexin I(des1-8) to the secretory vesicles as compared to the plasma membrane.  相似文献   

14.
A plasma membrane fraction, highly enriched in 5'-nucleotidase activity, was prepared from human neutrophils by disruption of previously formed neutrophil cytoplasts (enucleated neutrophils), which were devoid of intracellular organelles. This plasma membrane fraction shows an extremely low contamination by specific and azurophilic granule markers as compared to previous reported preparations. Nevertheless, a novel tertiary granule (Mollinedo, F. and Schneider, D.L. (1984) J. Biol. Chem. 259, 7143-7150), unlike specific and azurophilic granules, fuses partially with the cell surface under the experimental conditions used for cytoplast preparation. Comparison between the external cell-surface proteins in resting neutrophils and neutrophil cytoplasts by lactoperoxidase-catalyzed iodination showed some differences both in deletion and in addition of proteins. In resting cells, iodine was incorporated into at least 13 proteins ranging in size from over 200 to 30 kDa. A 140 kDa polypeptide, representing the major labeled surface component in resting neutrophils, was absent from cytoplasts. Furthermore, high-molecular-weight proteins (110 and over 160 kDa were more exposed to iodination after cytoplast preparation. Activation of human neutrophils by N-formylmethionylleucylphenylalanine induced some alterations in the pattern of labeled cell-surface proteins, which correlated to a certain degree with those observed during cytoplast preparation.  相似文献   

15.
Apoptotic cell death is characterized by the early exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. The aim of the present study was to examine whether PS exposure also occurs during oncosis (early primary necrosis) and to localize PS at the subcellular level, applying a pre-embedding immunogold labeling technique with biotin conjugated annexin V. The issue was addressed by using caspase-8 deficient, Bcl-2 overexpressing JB6 cells, which die by oncosis when stimulated with synthetic dsRNA. We observed by fluorescence microscopy that oncotic cells with preserved plasma membrane integrity showed PS exposure (annexin+/propidium iodide-). The data was confirmed on the ultrastructural level and PS was localized in oncosis at the outer leaflet of the continuous plasma membrane with preserved trilamellar structure. In postoncotic necrotic cells the immunogold labels were found on the plasma membrane and on the intracellular membranes of the cells, which underwent plasma membrane disruption. In conclusion, this study reveals that PS externalization occurs not only in apoptosis but also in oncosis at least in our cell model system.  相似文献   

16.
Membrane fusion was studied using human neutrophil plasma membrane preparations and phospholipid vesicles approximately 0.15 microns in diameter and composed of phosphatidylserine and phosphatidylethanolamine in a ratio of 1 to 3. Liposomes were labeled with N-(7-nitrobenzo-2-oxa-1,3-diazol-4-yl (NBD) and lissamine rhodamine B derivatives of phospholipids. Apparent fusion was detected as an increase in fluorescence of the resonance energy transfer donor, NBD, after dilution of the probes into unlabeled membranes. 0.5 mM Ca2+ alone was sufficient to cause substantial fusion of liposomes with a plasma membrane preparation but not with other liposomes. Both annexin I and des(1-9)annexin I caused a substantial increase in the rate of fusion under these conditions while annexin V inhibited fusion. Fusion mediated by des(1-9)annexin I was observed at Ca2+ concentrations as low as approximately 5 microM, suggesting that the truncated form of this protein may be active at physiologically low Ca2+ concentrations. Trypsin treated plasma membranes were incapable of fusion with liposomes, suggesting that plasma membrane proteins may mediate fusion. Liposomes did not fuse with whole cells at any Ca2+ concentration, indicating that the cytoplasmic side of the membrane is involved. These results suggest that annexin I and unidentified plasma membrane proteins may play a role in Ca(2+)-dependent degranulation of human neutrophils.  相似文献   

17.
We have studied the phospholipase A2 activity in fractionated human neutrophils, employing labeled phosphatidylinositol, phosphatidylcholine, and phosphatidylethanolamine as exogenous substrates. We used these phospholipid substrates labeled in the sn-1 position and measured the resulting labeled lysophospholipid forms in order to ascertain the phospholipase A2 specificity. In postnuclear supernatants from resting and A23187-activated cells, the phospholipase A2 activity showed a similar pH dependence curve with two pH optima at 5.5 and 7.5. Extracts from activated cells showed a 3-6-fold increase in enzyme activity. The subcellular distribution of phospholipase A2 activity in resting and A23187-treated human neutrophils was investigated by fractionation of postnuclear supernatants on continuous sucrose gradients. The neutral phospholipase A2 behaved as a membrane-bound enzyme and was mainly localized in the plasma membrane, the azurophilic granule, and in an ill-defined region of the gradient between the specific granules and mitochondria. The phospholipase A2 located in this undefined region showed a higher degree of activation than that located in other subcellular particulates in A23187-treated cells. This specific activation of an intracellular phospholipase A2 activity during cell stimulation indicates that cell compartmentalization may play a role in the formation of cell-activating and/or signal-transducing agents through the generation of arachidonate metabolites. Phosphatidylinositol was a better substrate for the plasma membrane enzyme, whereas phosphatidylcholine and phosphatidylethanolamine behaved as better substrates for intracellular organelle phospholipase A2 activities. The phospholipase A2 with maximal activity at pH 5.5 behaved as a soluble enzyme, and was almost completely localized in the azurophilic granules. Upon cell activation this acid enzyme activity was released in a similar way to beta-glucuronidase, a marker of azurophilic granules. These results demonstrate the different molecular properties of the phospholipase A2 activity, on the basis of its cellular location.  相似文献   

18.
Release and subcellular fractionation experiments indicate that fusion of a novel tertiary granule with the plasma membrane is concomitant with human neutrophil activation. Phorbol 12-myristate 13-acetate (PMA) induced a respiratory burst in human neutrophils as well as a high release of gelatinase, a marker of the tertiary granule. Preincubation of neutrophils with cytochalasin E induced a partially activated or 'primed' state, in which cells were unable to generate superoxide anion, but showed a reduced latency period for this activity. Fusion of tertiary granules with the cell surface also occurred during priming, although to a lesser extent than in PMA stimulation. The rapid tertiary granule degranulation, preceding that of specifics and azurophilics, seems to play an important role in the functionality and secretory properties of human neutrophils.  相似文献   

19.
The subcellular localization in anterior pituitary secretory cells of annexin II, one of the Ca2+-dependent phospholipid-binding proteins, was examined by immunohistochemistry and immunoelectron microscopy. Annexin II was associated with the plasma membrane, the membranes of secretory granules and cytoplasmic organelles, such as rough endoplasmic reticulum, mitochondria and vesicles, and with the nuclear envelope. Annexin II was frequently detected at the contact sites of secretory granules with other granules and with the plasma membrane. The anterior pituitary and adrenal medulla were treated with Clostridium perfringens enterotoxin, which induces Ca2+ influx, and examined under an electron microscope. The anterior pituitary cells showed multigranular exocytosis, i.e. multiple fusions of secretory granules with each other and with the plasma membrane, but adrenal chromaffin cells, which lack annexin II on the granule membranes, never showed granule--granule fusion and only single granule exocytosis. From these results, we conclude that, in anterior pituitary secretory cells, annexin II is involved in granule--granule fusion in addition to granule--plasma membrane fusion. © 1998 Chapman & Hall  相似文献   

20.
ML-7, (5-iodonaphthalene-1-sulfonyl) homopiperazine, is commonly employed as a myosin light chain kinase (MLCK) inhibitor. In the present study, we demonstrated that ML-7 affects the superoxide (O(2)(-))-producing system of human neutrophils in an MLCK-independent manner. Human neutrophils were stimulated with phorbol myristate acetate (PMA), which does not activate MLCK. ML-7 inhibited extracellular release, but not intracellular production of O(2)(-) in the stimulated cells. Fluorescence microscopy revealed the generation of O(2)(-) at intracellular compartments in the stimulated cells exposed to ML-7. At the electron microscopic level, the reaction product of NADPH oxidase activity was found in intracellular compartments. ML-7 strongly inhibited the association of the oxidant-producing intracellular compartments with the plasma membrane. Furthermore, the upregulation of alkaline phosphatase activity, a marker enzyme of the oxidant-producing intracellular compartments, was also inhibited by ML-7. These findings indicate that ML-7 inhibits the fusion of the oxidant-producing intracellular compartments to the plasma membrane resulting in the inhibition of the extracellular release of O(2)(-) in PMA-stimulated human neutrophils in an MLCK-independent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号