首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extracellular brefeldin A was detected in 4 % glucose-peptone-mineral salts cultures ofCurvularia lunata at the start of the exponential growth phase. Some fluctuations in brefeldin A levels occurred during the exponential growth phase followed by a significant reduction in level at the stationary growth phase. Broth glucose levels decreased according to a sigmoid relationship with time whereas broth pH remained fairly constant during the exponential growth phase followed by a gradual increase into the stationary growth phase. Mycelial brefeldin A levels were low throughout the various growth phases. The principal fatty acids present in decreasing order during the exponential growth phase were linoleic, oleic and palmitic acids. However, the content of linoleic acid was significantly reduced at the onset and during the stationary growth phase.  相似文献   

2.
Malonate exerted a stronger inhibitory effect on brefeldin A production than on mycelia growth in cultures ofCurvularia lunata especially at inhibitory levels of 100 to 200 mm. The extent of 200 mm malonate inhibition of growth and brefeldin A production was greater in cultures treated with malonate prior to inoculation than those treated following 5 days after inoculation. Maleate at levels of 40 to 220 mm activated brefeldin A formation in cultures though exerting variable effects on mycelia growth.  相似文献   

3.
Arsenite as opposed to azide exerted a stronger inhibitory effect on brefeldin A production than on mycelial growth of cultures ofCurvularia lunata. However, azide was a more potent inhibitor of mycelial growth than arsenite at 0.5 mn and 1.0 mm. The inhibitory effects of iodoacetate on growth and brefeldin A formation were significantly less potent than those of iosoacetamide. Increases in the levels of fluoride elicited a variable inhibitory effect on brefeldin A production and a corresponding deorease in biomass.  相似文献   

4.
Hot water-soluble polysaccharides were extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kützing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low total carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1→4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1→3,4 and 1→3,6 linkages and in xylose as a 1→3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from correspondingsuspension cultures. The high viscosities of the polymers suggested that they might be suitable for industrial uses.  相似文献   

5.
The regulation mechanism governing the xylanolytic activity in the strain Cellulomonas sp. IIbc was studied. High levels of activity were detected during the cultivation on cellulose as the only carbon source. No activity was produced with glucose, xylose or cellobiose cultures, but in the last one, the synthesis was de-repressed when the sugar concentration dropped to 0.2%. The activity was not inhibited by glucose, cellobiose and xylose up to 1% concentration. A basal constitutive synthesis was detected in nutrient broth cultures. At the same time, xylose and cellobiose acted as inducers of the xylanase activity.  相似文献   

6.
7.
Cybernetic models, developed earlier by the authors, have been evaluated experimentally for the growth of Klebsiella oxytoca in batch cultures using mixed substrates from glucose, xylose, arabinose, lactose, and fructose. Based entirely on information procured from batch growth on single substrates, the models accurately predict without further parameter fitting, diauxic growth on mixed substrates, automatically predicting the order in which the substrates are consumed. Even triauxic growth on a mixture of glucose, xylose, and lactose is predicted by the model based on single substrate data. Growth on glucose-fructose mixtures appears to need a slightly modified strategy for cybernetic variables.  相似文献   

8.
Summary The kinetics and enzymology of d-xylose utilization were studied in aerobic and anaerobic batch cultures of the facultatively fermentative yeasts Candida utilis, Pachysolen tannophilus, and Pichia stipitis. These yeasts did not produce ethanol under aerobic conditions. When shifted to anaerobiosis cultures of C. utilis did not show fermentation of xylose; in Pa. tannophilus a very low rate of ethanol formation was apparent, whereas with Pi. stipitis rapid fermentation of xylose occurred. The different behaviour of these yeasts ist most probably explained by differences in the nature of the initial steps of xylose metabolism: in C. utilis xylose is metabolized via an NADPH-dependent xylose reductase and an NAD+-linked xylitol dehydrogenase. As a consequence, conversion of xylose to ethanol by C. utilis leads to an overproduction of NADH which blocks metabolic activity in the absence of oxygen. In Pa. tannophilus and Pi. stipitis, however, apart from an NADPH-linked xylose reductase also an NADH-linked xylose reductase was present. Apparently xylose metabolism via the NADH-dependent reductase circumvents the imbalance of the NAD+/NADH redox system, thus allowing fermentation of xylose to ethanol under anaerobic conditions. The finding that the rate of xylose fermentation in Pa. tannophilus and Pi. stipitis corresponds with the activity of the NADH-linked xylose reductase activity is in line with this hypothesis. Furthermore, a comparative study with various xylose-assimilating yeasts showed that significant alcoholic fermentation of xylose only occurred in those organisms which possessed NADH-linked aldose reductase.  相似文献   

9.
The extracellular level of brefeldin A fluctuates with the length of malonate inhibition. Following treatment with malonate, myeelial multiplication as opposed to brefeldin A formation, was preferentially increased in the maleate, fumarate, succinate, citrate, methyl palmitate and glucose replacement cultures. Competitive maleate-malonate, fumarate — malonate, succinate — malonate and citrate-mal-onate-inhibited replacement cultures gave significantly higher mycelial and brefeldin A yields than the sole malonate-inhibited replacement cultures.  相似文献   

10.
Summary The relative contributions of lactate inhibition and the generation of sterile (undividing) cells to the low xylose utilisation rate of Lactococcus lactis IO-1 was investigated. The lactate inhibition constant of xylose grown cells was shown to be 9.3 times more than that of glucose grown cells. However, the sterile cell production rate and LDH inactivation rate of the xylose cultures were at least 10 times less than the glucose cultures. Thus, it is suggested that the slower substrate consumption rate in xylose medium is caused mainly by the large inhibition constant for the end product.  相似文献   

11.
Docetaxel is a commonly used chemotherapeutic drug for patients with late stage prostate cancer. However, serious side effect and drug resistance limit its clinical success. Brefeldin A is a 16-membered macrolide antibiotic from mangrove-derived Fungus Aspergillus sp. (9Hu), which exhibited potent cytotoxicity against human cancer cells. In the present study, we determined the effect of brefeldin A on docetaxel-induced growth inhibition and apoptosis in human prostate cancer PC-3 cells. Brefeldin A in combination with docetaxel inhibited the growth of PC-3 cells in monolayer and in three dimensional cultures. The combination also potently stimulated apoptosis in PC-3 cells as determined by propidium iodide staining and morphological assessment. Mechanistic studies showed that growth inhibition and apoptosis in PC-3 cells treated with brefeldin A and docetaxel were associated with decrease in the level of Bcl-2. The present study indicates that combined brefeldin A with docetaxel may represent a novel approach for improving the efficacy of docetaxel, and Bcl-2 may serve as a target for brefeldin A to enhance the effects of docetaxel chemotherapy.  相似文献   

12.
Oxygen-dependent xylitol metabolism in Pichia stipitis   总被引:1,自引:0,他引:1  
Pichia stipitis CBS 6054 was cultivated in chemostat cultures under aerobic and oxygen-limited conditions with xylitol alone, a mixture of xylitol and glucose and a mixture of xylitol and xylose. Xylitol metabolism was strictly respiratory and no ethanol was formed. Simultaneous feeding of xylitol and glucose and xylitol and xylose to oxygen-limited xylitol-pregrown cells resulted in ethanol formation. In vitro both pyruvate decarboxylase activity and alcohol dehydrogenase activity were present in cells metabolising xylitol under oxygen-limited conditions; however, this did not result in ethanol formation. Glucose, xylose and xylitol utilisation, respectively, were compared under anaerobic conditions with regard to growth rate, carbon source and oxygenation level during pre-cultivation. Irrespective of pre-growth conditions, xylitol was not metabolised under anaerobic conditions, whereas ethanol was formed from both xylose and glucose. Anaerobic xylose utilisation required induction of a xylose-utilising metabolic pathway during pre-cultivation. Received: 23 February 1999 / Received last revision: 20 July 1999 / Accepted: 1 August 1999  相似文献   

13.
The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1076–1083, 2014  相似文献   

14.
Cultures incorporated with increasing quantities of brefeldin A in the form of crude extracts of fungal metabolites prior to inoculation demonstrated reduced growth rate and no significant increase in brefeldin A content. On the other hand, cultures incubated with increasing levels of actinomycin D on the 8th day of cultivation showed slight stimulation of brefeldin A formation with insignificant effect on growth.  相似文献   

15.
Aspergillus nidulans produces an extracellular beta-D-fructofuranoside fructohydrolase (invertase) when grown on a medium containing the beta-fructofuranosides sucrose or raffinose, indicating that synthesis is subject to induction by the substrate. On a growth medium containing sucrose, production was maximal at 15 h in cultures incubated at 28 C degrees. After this time the level of detectable invertase in the cultures declined. A proportion of the enzyme was secreted during the linear growth phase of the fungus. Various sugars were investigated for induction of invertase, but only the two beta-fructofuranosides induced high production levels; with the other sugars, the enzyme was produced only at a low constitutive level. Mycelium grown under repressive conditions (1% glucose), rapidly produced invertase when transferred to sucrose-containing medium. After 80 min the invertase level in these cultures was 26-fold higher than the constitutive level. The repressive effect of other sugars, e.g. glucose and xylose, on invertase production was also demonstrated in this experimental system.  相似文献   

16.
For recombinant xylose-utilizing Saccharomyces cerevisiae, ethanol yield and productivity is substantially lower on xylose than on glucose. In contrast to glucose, xylose is a novel substrate for S. cerevisiae and it is not known how this substrate is recognized on a molecular level. Failure to activate appropriate genes during xylose-utilization has the potential to result in sub-optimal metabolism and decreased substrate uptake. Certain differences in fermentative performance between the two substrates have thus been ascribed to variations in regulatory response. In this study differences in substrate utilization of glucose and xylose was analyzed in the recombinant S. cerevisiae strain TMB3400. Continuous cultures were performed with glucose and xylose under carbon- and nitrogen-limited conditions. Whereas biomass yield and substrate uptake rate were similar during carbon-limited conditions, the metabolic profile was highly substrate dependent under nitrogen-limited conditions. While glycerol production occurred in both cases, ethanol production was only observed for glucose cultures. Addition of acetate and 2-deoxyglucose pulses to a xylose-limited culture was able to stimulate transient overflow metabolism and ethanol production. Application of glucose pulses enhanced xylose uptake rate under restricted co-substrate concentrations. Results are discussed in relation to regulation of sugar metabolism in Crabtree-positive and -negative yeast.  相似文献   

17.
The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion.  相似文献   

18.
Summary Candida shehatae exhibits different fermentative capacities when grown under different aeration conditions. These studies investigated the titers of xylose reductase, xylitol dehydrogenase, glucose-6-phosphate dehydrogenase and alcohol dehydrogenase in crude extracts ofCandida shehatae grown in continuous culture with various specific aeration rates. Carbon source, aeration rate, dilution rate and temperature were examined as variables. Xylose reductase and xylitol dehydrogenase were induced by xylose and were largely absent in glucose-grown cells. Alcohol dehydrogenae levels were higher in glucose-grown cells than in xylose-grown cells. The levels of this enzyme also correlated with the fermentative character of metabolism, having a low value under fully aerobic conditions, a high value under anaerobic conditions, and intermediate levels under various semi-aerobic conditions. Temperature had no effect on any enzyme level over the range of 20–30°C.Maintained in cooperation with the University of Wisconsin-Madison  相似文献   

19.
WhenBacteroides xylanolyticus X5-1 was grown on xylose in batch culture, acetate, ethanol, H2, CO2 and formate were the main fermentation products. CO inhibited H2 formation byB. xylanolyticus X5-1. As a result, the product formation shifted to more ethanol and formate and less acetate. Furthermore, less biomass was produced. H2 had almost no effect on the product formation from xylose. In batch cultures, dihydroxyacetone, acetone, acetoin and acetol could act as electron acceptors during xylose metabolism. The electron acceptors were reduced to their corresponding alcohols. The product formation from xylose byB. xylanolyticus X5-1 shifted to mainly acetate and CO2, and an increased biomass yield was obtained. H2, ethanol and formate were no longer produced. In continuous cultures not only 1,2-propanediol was formed from acetol, but also acetone. The NADP-dependent ethanol dehydrogenase that was present in xylosegrown continuous-culture cells, was repressed when the organism was grown in the presence of acetol. However, another alcohol dehydrogenase was induced for reduction of the external electron acceptor.  相似文献   

20.
We have constructed recombinant Saccharomyces cerevisiae JH1 harboring a xylose reductase gene (xyl1) isolated from Pichia stipitis. However, JH1 still utilizes glucose more easily than xylose. Therefore, in this study, we characterized the effect of a glucose supplement on xylose utilization, the expression level of xylose reductase as a recombinant gene in JH1, and the expression levels of two hexose transporters (Hxt4 and Hxt7) due to co-fermentation of different concentrations of glucose and xylose. Co-fermentation using 20 g/l of glucose increased xylose consumption up to 11.7 g/l, which was 7.9-fold that of xylose fermentation without a glucose supplement. In addition, we found xyl1 mRNA levels dramatically increased as cells grew under co-fermentation conditions with supplementary glucose; this result is consistent with a significant decrease in the xylose concentration 48 h after cultivation. In addition, the expression levels of Hxt4 and Hxt7 were strongly activated by the presence of glucose and xylose; in particular, Hxt7 showed a 2.9-fold increased expression relative to that of recombinant S. cerevisiae JHM with only a backbone vector, pYES2. The results of this study suggest that xylose utilization would be improved by activation of hexose transporters induced by glucose (rather than xylose) reductase expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号