首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
甲醛对DNA损伤的彗星实验研究   总被引:1,自引:0,他引:1  
甲醛是一种遗传毒性物质。国内外学者的大量研究证实,甲醛可以引起DNA-DNA、DNA-蛋白质分子交联,但对于甲醛是否能够引起DNA 分子的断裂,学界却存在分歧。本实验以颊黏膜细胞作为实验材料,通过彗星实验对甲醛的遗传毒性——尤其是DNA 分子断裂作用进行了系统的研究。结果显示甲醛在较低浓度(5μmol/L,7.5μmol/L,10μmol/L)时具有断裂作用,在较高浓度(15μmol/L,30μmol/L,50μmol/L)时则具有交联作用。根据本实验的结果,本文还首次论证了甲醛断裂作用的断裂峰值(7.5μmol/L)。  相似文献   

2.
甲醛对DNA损伤的彗星实验研究   总被引:8,自引:0,他引:8  
甲醛是一种遗传毒性物质。国内外学者的大量研究证实,甲醛可以引起DNA-DNA、DNA-蛋白质分子交联,但对于甲醛是否能够引起DNA分子的断裂,学界却存在分歧。本实验以颊黏膜细胞作为实验材料,通过彗星实验对甲醛的遗传毒性——尤其是DNA分子断裂作用进行了系统的研究。结果显示甲醛在较低浓度(5μmol/L,7,5μmol/L,10μmol/L)时具有断裂作用,在较高浓度(15μmol/L,30μmol/L,50μmol/L)时则具有交联作用。根据本实验的结果,本文还首次论证了甲醛断裂作用的断裂峰值(7.5μmol/L)。  相似文献   

3.
目的: 探讨不同浓度臭氧急性暴露对大鼠肺部细胞的遗传毒性的影响。方法: 36只wistar大鼠随机分为对照组(过滤空气暴露)、臭氧暴露组(0.12 ppm、0.5 ppm、1.0 ppm、2.0 ppm、4.0 ppm)共6组,每组6只。以不同浓度的臭氧对大鼠进行动态染毒4 h后,取肺组织并分离单细胞,采用酶联免疫吸附法检测8-羟基脱氧鸟苷(8-OHdG),利用彗星实验、微核试验和DNA-蛋白质交联实验进行DNA和染色体损伤分析。结果: 与对照组相比,肺组织中8-OHdG含量从臭氧暴露浓度为0.12 ppm起即显著增加,在0.5 ppm时达到最高值。随着臭氧暴露浓度升高,彗星拖尾率逐渐上升,且存在明显的剂量-效应关系;DNA-蛋白质交联率有先升高后下降的趋势,且在2.0 ppm时达到最大值;而肺部细胞微核率尽管呈现出上升趋势,但与对照组相比无显著性差异。结论: 急性臭氧暴露在较低浓度(0.12 ppm)时即可导致大鼠肺部细胞的DNA损伤;而在较高浓度(4 ppm)时却未见显著的染色体损伤。  相似文献   

4.
辐射后单个细胞DNA结构变化的定量检测   总被引:8,自引:0,他引:8  
细胞照射后可产生DNA链断裂、DNA-DNA交联、DNA-蛋白质交联等重要的DNA结构损伤,最终可导致DNA高级结构-DNA超螺旋结构状态的改变,而引发DNA复制、表达等一系列改变.参考国外报导,建立了单细胞电泳法(single cell gel electrophoresis assay),并辅以图象分析技术,可快速检测低达0.1Gy剂量所致DNA结构损伤,并得到了较好的剂量-效应关系,可望成为生物剂量计,用于环境低剂量辐射的监测.  相似文献   

5.
利用彗星电泳检测出UVB、UVC短时间照射会使肿瘤细胞的DNA发生断裂,而长时间照射之后彗星电泳无法检测到碎片,推测可能是由于DNA分子交联的原因[1],国内外尚无定论.为了更直观的研究这种现象,提取了UVB,UVA照射后K562细胞的DNA,并调节到合适的浓度在原子力显微镜下观测.实验结果表明UVB对K562肿瘤细胞DNA损伤的影响呈现时间/剂量效应,较短时间照射主要产生DNA的链断裂,较长时间辐射则主要产生DNA链的交联.UVC对K562肿瘤细胞DNA的损伤大于UVB.UVC短时照射即可引起DNA的断裂和交联,较长时间辐射主要产生交联和一些断裂;长时间照射不但产生大量交联,同时有大量断裂产生,并发生凝缩和缠绕等结构破坏.  相似文献   

6.
本方法以DNA单链断裂的检测为基础,在背景γ射线照射下进行DNA交联检测。所建方法与Kohn氏原法相比,洗脱时间大为缩短,实验所用主要材料都能立足国内。本文引入“交联度”这个参数,能同时相对定量地表示DNA总交联、DNA-蛋白质交联和DNA链间交联。此外还从DNA、蛋白质两方面确证了DNA-蛋白质交联的存在。  相似文献   

7.
甲醛能可逆性地交联蛋白质或DNA分子,因此被广泛应用于鉴定生物大分子复合物中的蛋白质或DNA。一般认为,甲醛分子小,可快速进入细胞,且作为交联剂使用时浓度较高,因而能在细胞做出应激反应之前将蛋白质和DNA交联固定在自然状态下。但高浓度甲醛是否能在交联固定生物大分子之前改变细胞蛋白质水平,尚无相关研究。如果属实,则可能导致相关研究产生假阳性或假阴性的结果。作者运用蛋白质组学技术分析对比了经过高浓度甲醛和未经甲醛处理过的Jurkat细胞的蛋白质谱。结果表明,高浓度甲醛可导致多个蛋白质水平产生差异。因此,将甲醛作为交联试剂使用时,应考虑设置甲醛处理的样本作为对照,或者增加实验重复次数,以避免鉴定到假阳性或假阴性的蛋白质或DNA。  相似文献   

8.
甲醛交联及染色质免疫沉淀作用研究体内DNA和蛋白质相互作用的一种新方法,在染色质结构研究中获得了广泛的应用。该方法利用甲醛固定活细胞中的DNA与蛋白质,通过免疫沉淀分离复合物,从而分析蛋白质及其体内的DNA结合序列。  相似文献   

9.
单细胞凝胶电泳技术及在土壤生态毒理学中的应用   总被引:5,自引:1,他引:4  
单细胞凝胶电泳技术又称为彗星实验,是最近几年发展起来的一种快速、简单、灵敏、可靠的检测细胞核DNA损伤的技术。总结了近几年来单细胞凝胶电泳技术的发展、原理、方法及其应用,并指出其下一步的发展趋势。彗星实验中,镶嵌于琼脂糖中的细胞核在电场中向正极移动,因细胞核与DNA片段迁移速率不同,而形成类似“彗星”的图像。目前采用的彗星实验有多种,可以检测诸如DNA双链断裂、单链断裂、碱不稳定位点等多种类型的DNA损伤。碱性彗星实验因其高灵敏度而被广泛采用。彗星实验的主要步骤包括细胞核悬浮液的获得、彗星电泳胶板制备、细胞裂解、DNA变性解旋、电泳、中和、染色和观察等。目前彗星实验广泛应用于各个研究领域,近年来开始用于环境污染的基因毒性研究和生物监测,并取得了迅速发展。  相似文献   

10.
抗菌肽CM4组分对K562癌细胞染色质DNA断裂作用的SCGE研究   总被引:12,自引:1,他引:11  
单细胞凝胶电泳法(singe cell gel electrophoresis, SCGE)是一种快速,敏感的检测单个哺乳动物细胞DNA断裂的技术,也叫彗星实验(comet assay).此实验首次通过SCGE法观察抗菌肽CM4组分对人髓样白血病K562细胞和正常人白细胞核染色质DNA的影响,从而进一步研究抗菌肽抗癌作用的机制.荧光显微镜观察显示经抗菌肽CM4组分处理过的K562癌细胞核染色质DNA出现断裂,形成一个亮的荧光头部和彗星似的尾部,而经同样处理的正常人白细胞和未经抗菌肽处理的K562癌细胞核染色质DNA未出现断裂,核完整,呈圆形.经彗星尾长分析,前者DNA损伤率平均为73.62%,统计学处理P<0.001,具高度显著性差异.这表明,抗菌肽CM4对K562癌细胞核染色质DNA有明显的断裂作用,而对正常人白细胞则没有断裂作用.  相似文献   

11.
Analysis of chromate-induced DNA-protein crosslinks with the comet assay   总被引:11,自引:0,他引:11  
Merk O  Reiser K  Speit G 《Mutation research》2000,471(1-2):71-80
Modifications of the comet assay have been introduced to measure crosslinks by determining the reduction of induced DNA migration. Our previous results indicated that the modified protocol of the alkaline comet assay is a sensitive tool for the detection of formaldehyde-induced DNA-protein crosslinks. But results for mitomycin C and cisplatin suggested that the modified protocol is not well suited for the evaluation of DNA-DNA crosslinkers. We now used the comet assay to investigate in V79 cells the effect of potassium chromate (K(2)CrO(4)), another DNA-protein crosslinker, to see whether the results obtained for formaldehyde can be generalized. However, chromate did not reduce spontaneous or radiation-induced DNA migration in the alkaline (pH 13) comet assay but led to a small but significant induction of DNA migration. A crosslinking effect of chromate could also not be detected with the alkaline comet assay after postincubation of cells in normal medium after chromate treatment to enable repair of other (migration-inducing) lesions that might mask the crosslinking effect. Exposure of slides to proteinase K further increased DNA migration of chromate-treated cells, thus indicating the presence of DNA-protein crosslinks. In contrast to the alkaline comet assay, a "neutral" version at pH 9 was suited to demonstrate reduced induction of DNA migration after gamma-irradiation of chromate-treated cells. The crosslinking effect was seen immediately at the end of the chromate treatment as well as after a 3h postincubation period. Using the "neutral" protocol in combination with proteinase K, we were able to demonstrate the presence of DNA-protein crosslinks as the probable cause for the migration-reducing effect. Further investigations will have to show whether this protocol can be recommended as a universal approach for the detection of DNA-protein crosslinks and also of DNA-DNA crosslinks with the comet assay.  相似文献   

12.
In vitro experiments were performed to determine whether 2450 MHz microwave radiation induces alkali-labile DNA damage and/or DNA-protein or DNA-DNA crosslinks in C3H 10T(1/2) cells. After a 2-h exposure to either 2450 MHz continuous-wave (CW) microwaves at an SAR of 1.9 W/kg or 1 mM cisplatinum (CDDP, a positive control for DNA crosslinks), C3H 10T(1/2) cells were irradiated with 4 Gy of gamma rays ((137)Cs). Immediately after gamma irradiation, the single-cell gel electrophoresis assay was performed to detect DNA damage. For each exposure condition, one set of samples was treated with proteinase K (1 mg/ml) to remove any possible DNA-protein crosslinks. To measure DNA-protein crosslinks independent of DNA-DNA crosslinks, we quantified the proteins that were recovered with DNA after microwave exposure, using CDDP and gamma irradiation, positive controls for DNA-protein crosslinks. Ionizing radiation (4 Gy) induced significant DNA damage. However, no DNA damage could be detected after exposure to 2450 MHz CW microwaves alone. The crosslinking agent CDDP significantly reduced both the comet length and the normalized comet moment in C3H 10T(1/2) cells irradiated with 4 Gy gamma rays. In contrast, 2450 MHz microwaves did not impede the DNA migration induced by gamma rays. When control cells were treated with proteinase K, both parameters increased in the absence of any DNA damage. However, no additional effect of proteinase K was seen in samples exposed to 2450 MHz microwaves or in samples treated with the combination of microwaves and radiation. On the other hand, proteinase K treatment was ineffective in restoring any migration of the DNA in cells pretreated with CDDP and irradiated with gamma rays. When DNA-protein crosslinks were specifically measured, we found no evidence for the induction of DNA-protein crosslinks or changes in amount of the protein associated with DNA by 2450 MHz CW microwave exposure. Thus 2-h exposures to 1.9 W/ kg of 2450 MHz CW microwaves did not induce measurable alkali-labile DNA damage or DNA-DNA or DNA-protein crosslinks.  相似文献   

13.
The oxidative effect of tannic acid and its two derivatives (ellagic and gallic acid), naturally occurring plant polyphenols, has been studied on digestive gland cells of the fresh-water mussel Unio tumidus. A spectrophotometric method was used to determine the protein thiol groups after incubation of the cells with the polyphenols at concentrations of 1, 15 and 60 microM. The results showed that the oxidative modification of proteins increased in a concentration-dependent manner but no changes were observed at the concentration of 1 microM. The comet assay (single-cell gel electrophoresis assay) with the formamido-pyrimidine glycosylase (FPG) protein was used to assess oxidative DNA base damage. The cells were treated with polyphenols at the concentrations of 30 and 60 microM and post-incubated with FPG. FPG strongly enhanced DNA damage induced by the polyphenols, indicating that N-7 guanine oxidation is responsible for the observed effect. Using the comet assay in combination with proteinase K we were able to demonstrate the presence of DNA-protein cross-links as the probable cause of the decrease in DNA migration. After treatment of the cells with tannic acid and its metabolites at concentrations of 120, 180 and 240 microM, they were post-incubated with proteinase K. After this treatment an increased DNA migration was observed, indicating the presence of DNA-protein cross-links. We have also used a fluorescence method with Hoechst 33258/propidium iodide DNA-binding dyes to study the extent of DNA fragmentation after exposure of the cells to polyphenols at concentrations of 1, 5 and 60 microM. The results demonstrate that the polyphenols can induce apoptosis and necrosis at higher concentrations (5 and 60 microM). All experimental data suggest that tannic, ellagic and gallic acids at concentrations above 1 microM are able to interact with proteins and DNA, which leads to their degradation or changes in their function.  相似文献   

14.
Biotransformation of inorganic arsenic to form both methylarsinic acid (MA) and dimethylarsinic acid (DMA) has traditionally been considered as a mechanism to facilitate the detoxification and excretion of arsenic. However, the methylation of inorganic arsenic as a detoxification mechanism has been questioned due to recent studies revealing an important role of organic arsenic in the induction of genetic damage. In a previous report a reduction of DNA migration after treatment of cells with DMA was described. In order to further evaluate the possible induction of protein-DNA adducts, an experiment was performed taking into account other parameters and modifications of the standard alkaline comet assay. In addition, the results obtained with the comet assay were compared with those obtained by analyzing the induction of sister chromatid exchanges (SCEs). SCE frequencies were significantly increased in treated cells in relation to controls (p<0.001). Furthermore, in the standard alkaline comet assay, as well as in the control assay for proteinase K treatment, a significant dose-dependent reduction in tail moment was observed. Nevertheless, the post-treatment with proteinase K induced the release of proteins joined to the DNA and consequently, a dose-dependent increment in DNA migration was observed (p<0.001). These results suggest that DNA-protein cross-links may be an important genotoxic effect induced by dimethylarsinic acid in human MRC-5 cells.  相似文献   

15.
To study the mechanisms of formation and repair of DNA-protein crosslinks in mammalian cells, the best general method to assay these lesions is the Kohn membrane alkaline elution procedure. Use of this sensitive technique requires the introduction of random strand breaks in the DNA by X-irradiation to reduce the very high molecular weight so that it elutes off the filter at an appropriate rate. This report describes an alternative method for fragmenting the DNA in the absence of X-irradiation equipment. Convenient reproducible elution rates of DNA from various mouse and human cells in culture without X-irradiation result from elution through polyvinyl chloride filters with 75 mM sodium hydroxide (0.33 ml/min) instead of the standard 20 mM EDTA-tetrapropylammonium hydroxide, pH 12.2 (0.03 to 0.04 ml/min). Dose-dependent retardation of the DNA elution was observed over the range 0 to 30 microM trans-platinum(II)diamminedichloride, and proteinase K treatment during cell lysis restored the elution rate to that of the untreated control cell DNA. In the absence of X-irradiation, this elution method measures DNA-protein crosslinks with higher sensitivity and equivalent reproducibility as the air-burst procedure.  相似文献   

16.
The dynamic development of metal-containing anticancer drugs has started since the discovery of cis-diamminedichloroplatinum(II). For many years it was believed that trans platinum(II) compounds were non-active as antitumour agents because trans-diamminedichloroplatinum is biologically inactive although it binds to DNA and also forms monoadducts and cross-links. In the present work the ability of a novel platinum(II) compound trans-[PtCl(2)(4-pmOpe)(2)] to induce DNA damage in human non-small cell lung cancer cells A549 was examined using the alkaline comet assay. The obtained results revealed that the novel trans platinum(II) complex induced DNA strand breaks, which were effectively repaired during 2h of post-incubation, and cross-links which remained unrepaired under these test conditions. Apart from that, the modified comet assay with incubation with proteinase K was used to verify the ability of trans-[PtCl(2)(4-pmOpe)(2)] and cis-DDP to form DNA-protein cross-links. It has been proved that only trans-[PtCl(2)(4-pmOpe)(2)] complex exhibits the ability to induce DNA-protein cross-links. The results suggest a different mechanism of action of this compound in comparison to cis-DDP. It seems that trans geometry and the presence of two diethyl (pyridin-4-ylmethyl)phosphates as non-leaving ligands can determine dissimilar properties of the adducts formed on DNA and the different mechanism of action of trans-[PtCl(2)(4-pmOpe)(2)] and in consequence the efficacy in killing cancer cells.  相似文献   

17.
Acetaldehyde (AA) is known to induce DNA-protein cross-links (DPX) and other genotoxic and mutagenic effects in cultured mammalian cells. Compared to formaldehyde (FA), AA is a very weak inducer of DPX and increased DPX levels are only measured at high, cytotoxic concentrations by different methods. Besides DPX, AA also induces DNA-DNA cross-links. Because the comet assay is increasingly used for the detection of cross-linking agents, we characterized the effects of AA in the comet assay in relation to cytotoxicity and other genetic endpoints such as the induction of sister chromatid exchange (SCE) and micronuclei (MN). The standard alkaline comet assay did not indicate induction of DNA strand-breaks by AA in a range of concentrations from 0.2 to 20 mM. AA at a concentration of 20 mM was clearly cytotoxic and reduced cell growth and population doubling to less than 50% of the control. Using the comet assay modification with proteinase K, slightly enhanced DNA migration was measured in comparison to treatment with AA only. No significant induction of cross-links by AA (measured as reduction of gamma ray-induced DNA migration) was determined by the comet assay. A small and reproducible but statistically not significant effect was measured for the AA concentration 20 mM. A clear and concentration-related increase in the frequency of sister chromatid exchange (SCE) and micronuclei (MN) was already measured at lower concentrations (0.2 and 0.5 mM, respectively). These results suggest that the comet assay has a low sensitivity for the detection of AA-induced DNA lesions leading to the induction of SCE and MN.  相似文献   

18.
This study evaluated the role of oxidative stress in acrolein-induced DNA damage, using HepG2 cells. Using the standard single cell gel electrophoresis (SCGE) assay, a significant dose-dependent increment in DNA migration was detected at lower concentrations of acrolein; but at the higher tested concentrations, a reduction in the migration was observed. Post-incubation with proteinase K significantly increased DNA migration in cells exposed to higher concentrations of acrolein. These results indicated that acrolein caused DNA strand breaks and DNA-protein crosslinks (DPC). To elucidate the oxidatively generated DNA damage mechanism, the 2,7-dichlorofluorescein diacetate (DCFH-DA) and o-phthalaldehyde (OPT) were used to monitor the levels of reactive oxygen species (ROS) and glutathione (GSH), respectively. The present study showed that acrolein induced the increased levels of ROS and depletion of GSH in HepG2 cells. Moreover, acrolein significantly caused 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) formation in HepG2 cells. These results demonstrate that the DNA damage induced by acrolein in HepG2 cells is related to the oxidative stress.  相似文献   

19.
Oxaliplatin is frequently used in the therapy of cancer. In DNA, oxaliplatin induces, like cisplatin, the formation of crosslinks, which are commonly accepted as being responsible for the cytotoxicity of platinum agents. The detection of oxaliplatin-induced DNA crosslink formation and repair could be a good measure of assessing how a patient is responding to the agent. In this study, we used a validated modification of the alkaline comet assay for detecting the presence of these crosslinks in vitro and in cancer patients. The H460 tumour cell line was treated in vitro with a range of oxaliplatin and cisplatin doses, and the subsequent crosslink formation and repair compared between the two agents. In addition, lymphocytes from cancer patients undergoing oxaliplatin-based chemotherapy were assayed for the formation and repair of oxaliplatin-induced crosslinks. A dose-response was observed in the in vitro samples, with cisplatin producing more crosslinks than oxaliplatin at equimolar concentrations and lesions induced by both agents showing different repair efficiencies. Furthermore, evidence of crosslink formation and repair was observed in the peripheral blood lymphocytes of all cancer patients studied, along with the detection of interindividual variability in crosslink formation and repair efficiencies. To the best of our knowledge, this is the first time that oxaliplatin DNA crosslinks have been detected either in vitro or in patient samples using the alkaline comet assay. Due to its sensitivity, rapidity, small cell sample and low cost, the alkaline comet assay is a good method for the detection of oxaliplatin-induced crosslinks and their subsequent repair and, in future clinical studies, could prove to be a valuable tool in assessing/predicting a patient's response to chemotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号