首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fc gamma RIIB are IgG receptors that inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. Inhibition depends on an immunoreceptor tyrosine-based inhibition motif (ITIM) that is phosphorylated upon Fc gamma RIIB coaggregation with ITAM-bearing receptors and recruits SH2 domain-containing phosphatases. Agarose bead-coated phosphorylated ITIM peptides (pITIMs) bind in vitro the single-SH2 inositol 5-phosphatases (SHIP1 and SHIP2) and the two-SH2 protein tyrosine phosphatases (SHP-1 and SHP-2). Phosphorylated Fc gamma RIIB, however, recruit selectively SHIP1/2 in vivo. We aimed here at explaining this discordance. We found that beads coated with low amounts of pITIM bound in vitro SHIP1, but not SHP-1, i.e. behaved as phosphorylated Fc gamma RIIB in vivo. The reason is that SHP-1 requires its two SH2 domains to bind on adjacent pITIMs. Consequently, the binding of SHP-1, but not of SHIP1, increased with pITIM density on beads. When trying to increase Fc gamma RIIB phosphorylation in B cells and mast cells, we found that concentrations of ligands optimal for Fc gamma RIIB phosphorylation failed to induce SHP-1 recruitment. SHP-1 was, however, recruited by Fc gamma RIIB when hyperphosphorylated following cell treatment with pervanadate. Our data suggest that Fc gamma RIIB phosphorylation may not be sufficient in vivo to enable the recruitment of SHP-1 but that (pathological?) conditions that would hyperphosphorylate Fc gamma RIIB might enable SHP-1 recruitment.  相似文献   

2.
Recently, we and others have demonstrated that negative signaling in B cells selectively induces the tyrosine phosphorylation of a novel inositol polyphosphate phosphatase, p145SHIP. In this study, we present data indicating that p145SHIP binds directly a phosphorylated motif, immunoreceptor tyrosine-based inhibition motif (ITIM), present in the cytoplasmic domain of Fc gammaRIIB1. Using recombinant SH2 domains, we show that binding is mediated via the Src homology region 2 (SH2)-containing inositol phosphatase (SHIP) SH2 domain. SHIP also bound to a phosphopeptide derived from CD22, raising the possibility that SHIP contributes to negative signaling by this receptor as well as Fc gammaRIIB1. The association of SHIP with the ITIM phosphopeptide was activation independent, while coassociation with Shc was activation dependent. Furthermore, experiments with Fc gammaRIIB1-deficient B cells demonstrated a genetic requirement for expression of Fc gammaRIIB1 in the induction of SHIP phosphorylation and its interaction with Shc. Based on these results, we propose a model of negative signaling in which co-cross-linking of surface immunoglobulin and Fc gammaRIIB1 results in sequential tyrosine phosphorylation of the ITIM, recruitment and phosphorylation of p145SHIP, and subsequent binding of Shc.  相似文献   

3.
CD150 (SLAM/IPO-3) is a cell surface receptor that, like the B cell receptor, CD40, and CD95, can transmit positive or negative signals. CD150 can associate with the SH2-containing inositol phosphatase (SHIP), the SH2-containing protein tyrosine phosphatase (SHP-2), and the adaptor protein SH2 domain protein 1A (SH2D1A/DSHP/SAP, also called Duncan's disease SH2-protein (DSHP) or SLAM-associated protein (SAP)). Mutations in SH2D1A are found in X-linked lymphoproliferative syndrome and non-Hodgkin's lymphomas. Here we report that SH2D1A is expressed in tonsillar B cells and in some B lymphoblastoid cell lines, where CD150 coprecipitates with SH2D1A and SHIP. However, in SH2D1A-negative B cell lines, including B cell lines from X-linked lymphoproliferative syndrome patients, CD150 associates only with SHP-2. SH2D1A protein levels are up-regulated by CD40 cross-linking and down-regulated by B cell receptor ligation. Using GST-fusion proteins with single replacements of tyrosine at Y269F, Y281F, Y307F, or Y327F in the CD150 cytoplasmic tail, we found that the same phosphorylated Y281 and Y327 are essential for both SHP-2 and SHIP binding. The presence of SH2D1A facilitates binding of SHIP to CD150. Apparently, SH2D1A may function as a regulator of alternative interactions of CD150 with SHP-2 or SHIP via a novel TxYxxV/I motif (immunoreceptor tyrosine-based switch motif (ITSM)). Multiple sequence alignments revealed the presence of this TxYxxV/I motif not only in CD2 subfamily members but also in the cytoplasmic domains of the members of the SHP-2 substrate 1, sialic acid-binding Ig-like lectin, carcinoembryonic Ag, and leukocyte-inhibitory receptor families.  相似文献   

4.
Platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) is a newly assigned member of the Ig immunoreceptor tyrosine-based inhibitory motif superfamily, and its functional role is suggested to be an inhibitory receptor that modulates immunoreceptor tyrosine-based activation motif-dependent signaling cascades. To test whether PECAM-1 is capable of delivering inhibitory signals in B cells and the functional requirement of protein-tyrosine phosphatases (PTPs) for this inhibitory signaling, we generated chimeric Fc gamma RIIB1-PECAM-1 receptors containing the extracellular and transmembrane portions of murine Fc gamma RIIB1 and the cytoplasmic domain of human PECAM-1. These chimeric receptors were stably expressed in chicken DT40 B cells either as wild-type or mutant cells deficient in SHP-1(-/-), SHP-2(-/-), SHIP(-/-), or SHP-1/2(-/-) and then assessed for their ability to inhibit B cell Ag receptor (BCR) signaling. Coligation of wild-type Fc gamma RIIB1-PECAM-1 with BCR resulted in inhibition of intracellular calcium release, suggesting that the cytoplasmic domain of PECAM-1 is capable of delivering an inhibitory signal that blocks BCR-mediated activation. This PECAM-1-mediated inhibitory signaling correlated with tyrosine phosphorylation of the Fc gamma RIIB1-PECAM-1 chimera, recruitment of SHP-1 and SHP-2 PTPs by the phosphorylated chimera, and attenuation of calcium mobilization responses. Mutational analysis of the two tyrosine residues, 663 and 686, constituting the immunoreceptor tyrosine-based inhibitory motifs in PECAM-1 revealed that both tyrosine residues play a crucial role in the inhibitory signal. Functional analysis of various PTP-deficient DT40 B cell lines stably expressing wild-type chimeric Fc gamma RIIB1-PECAM-1 receptor indicated that cytoplasmic Src homology 2-domain-containing phosphatases, SHP-1 and SHP-2, were both necessary and sufficient to deliver inhibitory negative regulation upon coligation of BCR complex with inhibitory receptor.  相似文献   

5.
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.  相似文献   

6.
Current models of Fc gamma R signal transduction in monocytes describe a molecular cascade that begins upon clustering of Fc gamma R with the phosphorylation of critical tyrosine residues in the cytoplasmic domains of Fc gamma RIIa or the gamma-chain subunit of Fc gamma RI and Fc gamma RIIIa. The cascade engages several other tyrosine-phosphorylated molecules, either enzymes or adapters, to manifest ultimately an array of biological responses, including phagocytosis, cell killing, secretion of a variety of inflammatory mediators, and activation. Continuing to assess systematically the molecules participating in the cascade, we have found that the SH2-containing 5'-inositol phosphatase (SHIP) is phosphorylated on tyrosine early and transiently after Fc gamma R clustering. This molecule in other systems, such as B cells and mast cells, mediates an inhibitory signal. We find that clustering of either Fc gamma RIIa or Fc gamma RI is effective in inducing SHIP phosphorylation, that SHIP binds in vitro to a phosphorylated immunoreceptor tyrosine-based activation motif, peptide from the cytoplasmic domain of Fc gamma RIIa in activation-independent fashion, although SHIP binding increases upon cell activation, and that Fc gamma RIIb and Fc gamma RIIc are not responsible for the observed SHIP phosphorylation. These findings prompt us to propose that SHIP inhibits Fc gamma R-mediated signal transduction by engaging immunoreceptor tyrosine-based activation motif-containing cytoplasmic domains of Fc gamma RIIa and Fc gamma RI-associated gamma-chain.  相似文献   

7.
The low-affinity receptor for IgG, FcgammaRIIB, functions broadly in the immune system, blocking mast cell degranulation, dampening the humoral immune response, and reducing the risk of autoimmunity. Previous studies concluded that inhibitory signal transduction by FcgammaRIIB is mediated solely by its immunoreceptor tyrosine-based inhibition motif (ITIM) that, when phosphorylated, recruits the SH2-containing inositol 5'- phosphatase SHIP and the SH2-containing tyrosine phosphatases SHP-1 and SHP-2. The mutational analysis reported here reveals that the receptor's C-terminal 16 residues are also required for detectable FcgammaRIIB association with SHIP in vivo and for FcgammaRIIB-mediated phosphatidylinositol 3-kinase hydrolysis by SHIP. Although the ITIM appears to contain all the structural information required for receptor-mediated tyrosine phosphorylation of SHIP, phosphorylation is enhanced when the C-terminal sequence is present. Additionally, FcgammaRIIB-mediated dephosphorylation of CD19 is independent of the cytoplasmic tail distal from residue 237, including the ITIM. Finally, the findings indicate that tyrosines 290, 309, and 326 are all sites of significant FcgammaRIIB1 phosphorylation following coaggregation with B cell Ag receptor. Thus, we conclude that multiple sites in FcgammaRIIB contribute uniquely to transduction of FcgammaRIIB-mediated inhibitory signals.  相似文献   

8.
FcgammaRIIB are single-chain low affinity receptors for IgG that negatively regulate immunoreceptor tyrosine-based activation motif-dependent cell activation. They bear one immunoreceptor tyrosine-based inhibition motif (ITIM) that becomes tyrosyl-phosphorylated upon coaggregation of FcgammaRIIB with immunoreceptor tyrosine-based activation motif-bearing receptors and that recruits SH2 domain-containing inositol 5-phosphatases (SHIPs) in vivo. Synthetic FcgammaRIIB ITIM phosphopeptides, however, also bind SH2 domain-containing protein-tyrosine phosphatases (SHPs) in vitro. To identify SHIP-binding sites, we exchanged residues between the FcgammaRIIB ITIM and the N-terminal ITIM of a killer cell Ig-like receptor that does not bind SHIPs. Loss of function and gain of function substitutions identified the Y+2 leucine, in the FcgammaRIIB ITIM, as determining the binding of both SHIP1 and SHIP2, but not the binding of SHP-1 or SHP-2. Conversely, the Y-2 isoleucine that determines the in vitro binding of SHP-1 and SHP-2 affected neither the binding nor the recruitment of SHIP1 or SHIP2. One hydrophobic residue, in the ITIM of FcgammaRIIB therefore determines the affinity for SHIPs. This residue is symmetrical to the hydrophobic residue that determines the affinity of all ITIMs for SHPs. It defines a SHIP-binding site, distinct from a SHP-binding site, that enables FcgammaRIIB to recruit SHIP1 and SHIP2 and that is preferentially used in vivo.  相似文献   

9.
One type of membrane microdomain, enriched in glycosphingolipids and cholesterol and referred to as lipid rafts, has been implicated in the generation of activating signals triggered by a variety of stimuli. Several laboratories, including ours, have recently demonstrated that the B cell receptor (BCR) inducibly localizes to the rafts upon activation and that functional lipid rafts are important for BCR-mediated "positive" signaling. In the later phases of the immune response, coligation of the BCR and the inhibitory receptor Fc gamma RIIB1 leads to potent inhibition of BCR-induced positive signaling through the recruitment of the inositol phosphatase SHIP to Fc gamma RIIB1. One potential model is that the Fc gamma RIIB1 itself might be excluded from the rafts basally and that destabilization of raft-dependent BCR signaling might be part of the mechanism for the Fc gamma RIIB1-mediated negative regulation. We tested this hypothesis and observed that preventing BCR raft localization is not the mechanism for this inhibition. Surprisingly, a fraction of Fc gamma RIIB1 is constitutively localized in the rafts and increases further after BCR + FcR coligation. SHIP is actively recruited to lipid rafts under negative stimulation conditions, and the majority of Fc gamma RIIB1-SHIP complexes localize to lipid rafts compared with non-raft regions of the plasma membrane. This suggested that this negative feedback loop is also initiated in the lipid rafts. Despite its basal localization to the rafts, Fc gamma RIIB1 did not become phosphorylated after BCR alone cross-linking and did not colocalize with the BCR that moves to rafts upon BCR engagement alone (positive signaling conditions), perhaps suggesting the existence of different subsets of rafts. Taken together, these data suggest that lipid rafts play a role in both the positive signaling via the BCR as well as the inhibitory signaling through Fc gamma RIIB1/SHIP.  相似文献   

10.
SH2-containing inositol 5'-phosphatase (SHIP) plays a negative regulatory role in hematopoietic cells. We have now cloned the rat SHIP isozyme (SHIP2) cDNA from skeletal muscle, which is one of the most important target tissue of insulin action. Rat SHIP2 cDNA encodes a 1183-amino-acid protein that is 45% identical with rat SHIP. Rat SHIP2 contains an amino-terminal SH2 domain, a central 5'-phosphoinositol phosphatase activity domain, and a phosphotyrosine binding (PTB) consensus sequence and a proline-rich region at the carboxyl tail. Specific antibodies to SHIP2 were raised and the function of SHIP2 was studied by stably overexpressing rat SHIP2 in Rat1 fibroblasts expressing human insulin receptors (HIRc). Endogenous SHIP2 underwent insulin-mediated tyrosine phosphorylation and phosphorylation was markedly increased when SHIP2 was overexpressed. Although overexpression of SHIP2 did not affect insulin-induced tyrosine phosphorylation of the insulin receptor beta-subunit and Shc, subsequent association of Shc with Grb2 was inhibited, possibly by competition between the SH2 domains of SHIP2 and Grb2 for the Shc phosphotyrosine. As a result, insulin-stimulated MAP kinase activation was reduced in SHIP2-overexpressing cells. Insulin-induced tyrosine phosphorylation of IRS-1, IRS-1 association with the p85 subunit of PI3-kinase, and PI3-kinase activation were not affected by overexpression of SHIP2. Interestingly, although both PtdIns-(3,4,5)P3 and PtdIns(3,4)P2 have been implicated in the regulation of Akt activity in vitro, overexpression of SHIP2 inhibited insulin-induced Akt activation, presumably by its 5'-inositol phosphatase activity. Furthermore, insulin-induced thymidine incorporation was decreased by overexpression of SHIP2. These results indicate that SHIP2 plays a negative regulatory role in insulin-induced mitogenesis, and regulation of the Shc. Grb2 complex and of the downstream products of PI3-kinase provides possible mechanisms of SHIP2 action in insulin signaling.  相似文献   

11.
The immunoreceptor tyrosine-based inhibitory motif (ITIM) of human type IIb Fcgamma receptor (FcgammaRIIb) is phosphorylated on its tyrosine upon co-clustering with the B cell receptor (BCR). The phosphorylated ITIM (p-ITIM) binds to the SH2 domains of polyphosphoinositol 5-phosphatase (SHIP) and the tyrosine phosphatase, SHP-2. We investigated the involvement of the molecular complex composed of the phosphorylated SHIP and FcgammaRIIb in the activation of SHP-2. As a model compound, we synthesized a bisphosphopeptide, combining the sequences of p-ITIM and the N-terminal tyrosine phosphorylated motif of SHIP with a flexible spacer. This compound bound to the recombinant SH2 domains of SHP-2 with high affinity and activated the phosphatase in an in vitro assay. These data suggest that the phosphorylated FcgammaRII-SHIP complexes formed in the intact cells may also activate SHP-2. Grb2-associated binder 1 (Gab1) is a multisite docking protein, which becomes tyrosine-phosphorylated in response to various types of signaling, including BCR. In turn it binds to the SH2 domains of SHP-2, SHIP and the p85 subunit of phosphatidyl inositol 3-kinase (PtdIns3-K) and may regulate their activity. Gab1 is a potential substrate of SHP-2, thus its binding to FcgammaRIIb may modify the Gab1-bound signaling complex. We show here that Gab1 is part of the multiprotein complex assembled by FcgammaRIIb upon its co-clustering with BCR. Gab1 may recruit SH2 domain-containing molecules to the phosphorylated FcgammaRIIb. SHP-2, activated upon the binding to FcgammaRIIb-SHIP complex, partially dephosphorylates Gab1, resulting in the release of PtdIns3-K and ultimately in the inhibition of downstream activation pathways in BCR/FcgammaRIIb co-aggregated cells.  相似文献   

12.
Recently, we have described a novel protein-protein interaction between the G-protein coupled bradykinin B2 receptor and tyrosine phosphatase SHP-2 via an immunoreceptor tyrosine-based inhibition motif (ITIM) sequence located in the C-terminal part of the B2 receptor and the Src homology (SH2) domains of SHP-2. Here we show that phospholipase C (PLC)gamma1, another SH2 domain containing protein, can also interact with this ITIM sequence. Using surface plasmon resonance analysis, we observed that PLCgamma1 interacted with a peptide containing the phosphorylated form of the bradykinin B2 receptor ITIM sequence. In CHO cells expressing the wild-type B2 receptor, bradykinin-induced transient recruitment and activation of PLCgamma1. Interestingly, this interaction was only observed in quiescent and not in proliferating cells. Mutation of the key ITIM residue abolished this interaction with and activation of PLCgamma1. Finally we also identified bradykinin-induced PLCgamma1 recruitment and activation in primary culture renal mesangial cells.  相似文献   

13.
The negative regulation of T- or B-cell antigen receptor signaling by CD5 was proposed based on studies of thymocytes and peritoneal B-1a cells from CD5-deficient mice. Here, we show that CD5 is constitutively associated with phosphotyrosine phosphatase activity in Jurkat T cells. CD5 was found associated with the Src homology 2 (SH2) domain containing hematopoietic phosphotyrosine phosphatase SHP-1 in both Jurkat cells and normal phytohemagglutinin-expanded T lymphoblasts. This interaction was increased upon T-cell receptor (TCR)-CD3 cell stimulation. CD5 co-cross-linking with the TCR-CD3 complex down-regulated the TCR-CD3-increased Ca2+ mobilization in Jurkat cells. In addition, stimulation of Jurkat cells or normal phytohemagglutinin-expanded T lymphoblasts through TCR-CD3 induced rapid tyrosine phosphorylation of several protein substrates, which was substantially diminished after CD5 cross-linking. The CD5-regulated substrates included CD3zeta, ZAP-70, Syk, and phospholipase Cgammal but not the Src family tyrosine kinase p56(lck). By mutation of all four CD5 intracellular tyrosine residues to phenylalanine, we found the membrane-proximal tyrosine at position 378, which is located in an immunoreceptor tyrosine-based inhibitory (ITIM)-like motif, crucial for SHP-1 association. The F378 point mutation ablated both SHP-1 binding and the down-regulating activity of CD5 during TCR-CD3 stimulation. These results suggest a critical role of the CD5 ITIM-like motif, which by binding to SHP-1 mediates the down-regulatory activity of this receptor.  相似文献   

14.
SH2-containing inositol phosphatase 2 (SHIP2) is a physiologically important negative regulator of insulin signaling by hydrolyzing the phosphatidylinositol (PI) 3-kinase product PI 3,4,5-trisphosphate in the target tissues of insulin. Targeted disruption of the SHIP2 gene in mice resulted in increased insulin sensitivity without affecting biological systems other than insulin signaling. Therefore, we investigated the molecular mechanisms by which SHIP2 specifically regulates insulin-induced metabolic signaling in 3T3-L1 adipocytes. Insulin-induced phosphorylation of Akt, one of the molecules downstream of PI3-kinase, was inhibited by expression of wild-type SHIP2, whereas it was increased by expression of 5'-phosphatase-defective (DeltaIP) SHIP2 in whole cell lysates. The regulatory effect of SHIP2 was mainly seen in the plasma membrane (PM) and low density microsomes but not in the cytosol. In this regard, following insulin stimulation, a proportion of Akt2, and not Akt1, appeared to redistribute from the cytosol to the PM. Thus, insulin-induced phosphorylation of Akt2 at the PM was predominantly regulated by SHIP2, whereas the phosphorylation of Akt1 was only minimally affected. Interestingly, insulin also elicited a subcellular redistribution of both wild-type and DeltaIP-SHIP2 from the cytosol to the PM. The degree of this redistribution was inhibited in part by pretreatment with PI3-kinase inhibitor. Although the expression of a constitutively active form of PI3-kinase myr-p110 also elicited a subcellular redistribution of SHIP2 to the PM, expression of SHIP2 appeared to affect the myr-p110-induced phosphorylation, and not the translocation, of Akt2. Furthermore, insulin-induced phosphorylation of Akt was effectively regulated by SHIP2 in embryonic fibroblasts derived from knockout mice lacking either insulin receptor substrate-1 or insulin receptor substrate-2. These results indicate that insulin specifically stimulates the redistribution of SHIP2 from the cytosol to the PM independent of 5'-phosphatase activity, thereby regulating the insulin-induced translocation and phosphorylation of Akt2 at the PM.  相似文献   

15.
FcgammaRIIB are low-affinity receptors for IgG that contain an immunoreceptor tyrosine-based inhibition motif (ITIM) and inhibit immunoreceptor tyrosine-based activation motif (ITAM)-dependent cell activation. When coaggregated with ITAM-bearing receptors, FcgammaRIIB become tyrosyl-phosphorylated and recruit the Src homology 2 (SH2) domain-containing inositol 5'-phosphatases SHIP1 and SHIP2, which mediate inhibition. The FcgammaRIIB ITIM was proposed to be necessary and sufficient for recruiting SHIP1/2. We show here that a second tyrosine-containing motif in the intracytoplasmic domain of FcgammaRIIB is required for SHIP1/2 to be coprecipitated with the receptor. This motif functions as a docking site for the SH2 domain-containing adapters Grb2 and Grap. These adapters interact via their C-terminal SH3 domain with SHIP1/2 to form a stable receptor-phosphatase-adapter trimolecular complex. Both Grb2 and Grap are required for an optimal coprecipitation of SHIP with FcgammaRIIB, but one adapter is sufficient for the phosphatase to coprecipitate in a detectable manner with the receptors. In addition to facilitating the recruitment of SHIPs, the second tyrosine-based motif may confer upon FcgammaRIIB the properties of scaffold proteins capable of altering the composition and stability of the signaling complexes generated following receptor engagement.  相似文献   

16.
A general, combinatorial library method for the rapid identification of high-affinity peptide ligands of protein modular domains is reported. The validity of this method has been demonstrated by determining the sequence specificity of four Src homology 2 (SH2) domains derived from protein tyrosine phosphatase SHP-1 and SHP-2 and inositol phosphatase SHIP. A phosphotyrosyl (pY) peptide library was screened against the SH2 domains, and the beads that carry high-affinity ligands of the SH2 domains were identified and peptides were sequenced by partial Edman degradation and mass spectrometry. The results reveal that the N-terminal SH2 domain of SHP-2 is capable of recognizing four different classes of pY peptides. Binding competition studies suggest that the four classes of pY peptides all bind to the same site on the SH2 domain surface. The C-terminal SH2 domains of SHP-1 and SHP-2 and the SHIP SH2 domain each bind to pY peptides of a single consensus sequence. Database searches using the consensus sequences identified most of the known as well as many potential interacting proteins of SHP-1 and/or SHP-2. Several proteins are found to bind to the SH2 domains of SHP-1 and SHP-2 through a new, nonclassical ITIM motif, (V/I/L)XpY(M/L/F)XP, which corresponds to the class IV peptides selected from the pY library. The combinatorial library method should be generally applicable to other protein domains.  相似文献   

17.
SHIP2 (SH2-containing inositol polyphosphate 5-phosphatase 2) is a phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P(3)) 5-phosphatase containing various motifs susceptible to mediate protein-protein interaction. In cell models, SHIP2 negatively regulates insulin signalling through its catalytic PtdIns(3,4,5)P(3) 5-phosphatase activity. We have previously reported that SHIP2 interacts with the c-Cbl associated protein (CAP) and c-Cbl, proteins implicated in the insulin cellular response regulating the small G protein TC10. The first steps of the TC10 pathway are the recruitment and tyrosine phosphorylation by the insulin receptor of the adaptor protein with Pleckstrin Homology and Src Homology 2 domains (APS). Herein, we show that SHIP2 can directly interact with APS in 3T3-L1 adipocytes and in transfected CHO-IR cells (Chinese hamster ovary cells stably transfected with the insulin receptor). Upon insulin stimulation, APS and SHIP2 are recruited to cell membranes as seen by immunofluorescence studies, which is consistent with their interaction. We also observed that SHIP2 negatively regulates APS insulin-induced tyrosine phosphorylation and consequently inhibits APS association with c-Cbl. APS, which specifically interacts with SHIP2, but not PTEN, in turn, increases the PtdIns(3,4,5)P(3) 5-phosphatase activity of SHIP2 in an inositol phosphatase assay. Co-transfection of SHIP2 and APS in CHO-IR cells further increases the inhibitory effect of SHIP2 on Akt insulin-induced phosphorylation. Therefore, the interaction between APS and SHIP2 provides to both proteins potential negative regulatory mechanisms to act on the insulin cascade.  相似文献   

18.
SHP-1 is an SH2-containing cytoplasmic tyrosine phosphatase that is widely distributed in cells of the hematopoietic system. SHP-1 plays an important role in the signal transduction of many cytokine receptors, including the receptor for erythropoietin, by associating via its SH2 domains to the receptors and dephosphorylating key substrates. Recent studies have suggested that SHP-1 regulates the function of Jak family tyrosine kinases, as shown by its constitutive association with the Tyk2 kinase and the hyperphosphorylation of Jak kinases in the motheaten cells that lack functional SHP-1. We have examined the interactions of SHP-1 with two tyrosine kinases activated during engagement of the erythropoietin receptor, the Janus family kinase Jak-2 and the c-fps/fes kinase. Immunoblotting studies with extracts from mouse hematopoietic cells demonstrated that Jak2, but not c-fes, was present in anti-SHP-1 immunoprecipitates, suggesting that SHP-1 selectively associates with Jak2 in vivo. Consistent with this, when SHP-1 was coexpressed with these kinases in Cos-7 cells, it associated with and dephosphorylated Jak2 but not c-fes. Transient cotransfection of truncated forms of SHP-1 with Jak2 demonstrated that the SHP-1-Jak2 interaction is direct and is mediated by a novel binding activity present in the N terminus of SHP-1, independently of SH2 domain-phosphotyrosine interaction. Such SHP-1-Jak2 interaction resulted in induction of the enzymatic activity of the phosphatase in in vitro protein tyrosine phosphatase assays. Interestingly, association of the SH2n domain of SHP-1 with the tyrosine phosphorylated erythropoietin receptor modestly potentiated but was not essential for SHP-1-mediated dephosphorylation of Jak2 and had no effect on c-fes phosphorylation. These data indicate that the main mechanism for regulation of Jak2 phosphorylation by SHP-1 involves a direct, SH2-independent interaction with Jak2 and suggest the existence of similar mechanisms for other members of the Jak family of kinases. They also suggest that such interactions may provide one of the mechanisms that control SHP-1 substrate specificity.  相似文献   

19.
Immunoreceptor tyrosine-based inhibitory motifs (ITIM) have been implicated in the negative modulation of immunoreceptor signaling pathways. The IL-4R alpha-chain (IL-4Ralpha) contains a putative ITIM in the carboxyl terminal. To determine the role of ITIM in the IL-4 signaling pathway, we ablated the ITIM of IL-4Ralpha by deletion and site-directed mutagenesis and stably expressed the wild-type (WT) and mutant hIL-4Ralpha in 32D/insulin receptor substrate-2 (IRS-2) cells. Strikingly, 32D/IRS-2 cells expressing mutant human (h)IL-4Ralpha were hyperproliferative in response to IL-4 compared with cells expressing WT hIL-4Ralpha. Enhanced tyrosine phosphorylation of Stat6, but not IRS-2, induced by hIL-4 was observed in cells expressing mutant Y713F. Using peptides corresponding to the ITIM of hIL-4Ralpha, we demonstrate that tyrosine-phosphorylated peptides, but not their nonphosphorylated counterparts, coprecipitate SH2-containing tyrosine phosphatase-1, SH2-containing tyrosine phosphatase-2, and SH2-containing inositol 5'-phosphatase. The in vivo association of SH2-containing inositol 5'-phosphatase with IL-4Ralpha was verified by coimmunoprecipitation with anti-IL-4Ralpha Abs. These results demonstrate a functional role for ITIM in the regulation of IL-4-induced proliferation.  相似文献   

20.
The X-linked lymphoproliferative (XLP) syndrome gene encodes a protein named SAP or SH2D1A that is composed of a single Src homology 2 (SH2) domain. Two models have been proposed for its function in lymphocyte signaling. One postulates that it acts as an inhibitor of interactions between the phosphatase SHP-2 and the immune receptor SLAM. The other suggests that it functions as an adaptor to promote the recruitment of a kinase, FynT, to SLAM. Here, we provide evidence in support of both roles for SAP. Using an array of peptides derived from the SLAM family of receptors, we demonstrate that SAP binds with comparable affinities to the same sites in these receptors as do the SH2 domains of SHP-2 and SHIP, suggesting that these three proteins may compete against one another in binding to a given SLAM family receptor. Furthermore, in vitro and in vivo binding studies indicate that SAP is capable of binding directly to FynT, an interaction mediated by the FynT SH3 domain. In cells, FynT was shown to be indispensable for SLAM tyrosine phosphorylation, which, in turn, was drastically enhanced by SAP. Because SAP also blocked the recruitment of SHP-2 to SLAM in these cells, we propose a dual functional role for SAP in SLAM signaling by acting both as an adaptor for FynT and an inhibitor to SHP-2 binding. The physiological relevance of the dual functional role for SAP is underscored by the observation that disease-causing SAP mutants exhibited significantly reduced affinities to both FynT and SLAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号