首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies have shown that the hyperthermophilic archaeon Pyrococcus furiosus contains four distinct cytoplasmic 2-ketoacid oxidoreductases (ORs) which differ in their substrate specificities, while the hyperthermophilic bacterium Thermotoga maritima contains only one, pyruvate ferredoxin oxidoreductase (POR). These enzymes catalyze the synthesis of the acyl (or aryl) coenzyme A derivative in a thiamine PPi-dependent oxidative decarboxylation reaction with reduction of ferredoxin. We report here on the molecular analysis of the POR (por) and 2-ketoisovalerate ferredoxin oxidoreductase (vor) genes from P. furiosus and of the POR gene from T. maritima, all of which comprise four different subunits. The operon organization for P. furiosus POR and VOR was porG-vorDAB-porDAB, wherein the gamma subunit is shared by the two enzymes. The operon organization for T. maritima POR was porGDAB. The three enzymes were 46 to 53% identical at the amino acid level. Their delta subunits each contained two ferredoxin-type [4Fe-4S] cluster binding motifs (CXXCXXCXXXCP), while their beta subunits each contained four conserved cysteines in addition to a thiamine PPi-binding domain. Amino-terminal sequence comparisons show that POR, VOR, indolepyruvate OR, and 2-ketoglutarate OR of P. furiosus all belong to a phylogenetically homologous OR family. Moreover, the single-subunit pyruvate ORs from mesophilic and moderately thermophilic bacteria and from an amitochondriate eucaryote each contain four domains which are phylogenetically homologous to the four subunits of the hyperthermophilic ORs (27% sequence identity). Three of these subunits are also homologous to the dimeric POR from a mesophilic archaeon, Halobacterium halobium (21% identity). A model is proposed to account for the observed phenotypes based on genomic rearrangements of four ancestral OR subunits.  相似文献   

2.
DHDPS (dihydrodipicolinate synthase) catalyses the branch point in lysine biosynthesis in bacteria and plants and is feedback inhibited by lysine. DHDPS from the thermophilic bacterium Thermotoga maritima shows a high level of heat and chemical stability. When incubated at 90 degrees C or in 8 M urea, the enzyme showed little or no loss of activity, unlike the Escherichia coli enzyme. The active site is very similar to that of the E. coli enzyme, and at mesophilic temperatures the two enzymes have similar kinetic constants. Like other forms of the enzyme, T. maritima DHDPS is a tetramer in solution, with a sedimentation coefficient of 7.2 S and molar mass of 133 kDa. However, the residues involved in the interface between different subunits in the tetramer differ from those of E. coli and include two cysteine residues poised to form a disulfide bond. Thus the increased heat and chemical stability of the T. maritima DHDPS enzyme is, at least in part, explained by an increased number of inter-subunit contacts. Unlike the plant or E. coli enzyme, the thermophilic DHDPS enzyme is not inhibited by (S)-lysine, suggesting that feedback control of the lysine biosynthetic pathway evolved later in the bacterial lineage.  相似文献   

3.
The alpha-L-fucosidase from Thermotoga maritima (Tm alpha fuc) was converted into alpha-L-transfucosidase variants by directed evolution. The wild-type enzyme catalyzes oligosaccharide synthesis by transfer of a fucosyl residue from a pNP-fucoside donor to pNP-fucoside (self-condensation) with alpha-(1-->3) regioselectivity or pNP-galactoside (transglycosylation) with alpha-(1-->2) regioselectivity at low yields (7%). The wild-type enzyme was submitted to one cycle of mutagenesis, followed by rational recombination of the selected mutations, which allowed identification of variants with improved transferase activity. The transferase and hydrolytic kinetics of all the mutants were assessed by NMR methods and capillary electrophoresis. It was shown that the best mutant exhibited a dramatic 32-fold increase in the transferase/hydrolytic kinetic ratio, while keeping 60% of the overall wild-type enzyme activity. Accordingly, the maximum yield of a specific transglycosylation product [pNP-Gal-alpha-(1-->2)-Fuc] reached more than 60% compared to 7% with WT enzyme at equimolar and low concentrations of donor and acceptor (10 mM). Such an improvement was obtained with only three mutations (T264A, Y267F, L322P), which were all located in the second amino acid shell of the fucosidase active site. Molecular modeling suggested that some of these mutations (T264A, Y267F) cause a reorientation of the amino acids that are in direct contact with the substrates, resulting in a better docking energy. Such mutants with high transglycosidase activity may constitute novel enzymatic tools for the synthesis of fucooligosaccharides.  相似文献   

4.
Two novel glycolipids with a very rare alpha(1-->4) diglucosyl structure have been isolated from the thermophilic bacterium Thermotoga maritima. The structures of these compounds, on the basis of chemical procedures and spectroscopic studies (FAB-MS and NMR), were shown to be: 1(3),2-dipalmitoyl-3(1)-[glucopyranosyl-(6-decanoyl)-alpha-D-(1-->4)- glucopyranosyl-alpha-D]-glycerol (Glycolipid 1) and 1(3),2-dipalmitoyl-3(1)-[glucopyranosyl-alpha-D-(1-->4)-glucopyranosyl- alpha-D]-glycerol (Glycolipid 2).  相似文献   

5.
NifS-like proteins are ubiquitous, homodimeric, proteins which belong to the alpha-family of pyridoxal-5'-phoshate dependent enzymes. They are proposed to donate elementary sulphur, generated from cysteine, via a cysteinepersulphide intermediate during iron sulphur cluster biosynthesis, an important albeit not well understood process. Here, we report on the crystal structure of a NifS-like protein from the hyperthermophilic bacterium Thermotoga maritima (tmNifS) at 2.0 A resolution. The tmNifS is structured into two domains, the larger bearing the pyridoxal-5'-phosphate-binding active site, the smaller hosting the active site cysteine in the middle of a highly flexible loop, 12 amino acid residues in length. Once charged with sulphur the loop could possibly deliver S(0) directly to regions far remote from the protein. Based on the three-dimensional structures of the native as well as the substrate complexed form and on spectrophotometric results, a mechanism of sulphur activation is proposed. The His99, which stacks on top of the pyridoxal-5'-phosphate co-factor, is assigned a crucial role during the catalytic cycle by acting as an acid-base catalyst and is believed to have a pK(a) value depending on the co-factor redox state.  相似文献   

6.
极耐热性阿拉伯糖苷酶基因的表达、纯化及酶学性质研究   总被引:2,自引:0,他引:2  
采用PCR从海栖热袍菌(Thermotoga maritima)克隆出编码极耐热稳定性阿拉伯糖苷酶基因,以pET20b为表达质粒,与其C末端6个组氨酸标签序列融合,在大肠杆菌中得到高效表达。基因表达产物通过热处理和亲和层析柱纯化后,酶纯度达电泳均一。纯化重组酶稳定性检测表明,阿拉伯糖苷酶活性最适作用温度和最适作用pH分别为90~95℃和pH 5.0~5.5,在pH 4.2~8.2之间酶活力稳定,95℃的半衰期为4h;SDSPAGE测得酶的分子量为56.57 kD,与理论推算值相吻合。在所测定的底物中,阿拉伯糖苷酶仅对对硝基苯阿拉伯呋喃糖苷(pNPAF)有专一性水解作用,其动力学参数Km值为018mmol/L, Vmax为139μmol/min·mg。  相似文献   

7.
8.
AIMS: Characterization of a thermostable recombinant beta-galactosidase from Thermotoga maritima for the hydrolysis of lactose and the production of galacto-oligosaccharides. METHODS AND RESULTS: A putative beta-galactosidase gene of Thermotoga maritima was expressed in Escherichia coli as a carboxyl terminal His-tagged recombinant enzyme. The gene encoded a 1100-amino acid protein with a calculated molecular weight of 129,501. The expressed enzyme was purified by heat treatment, His-tag affinity chromatography, and gel filtration. The optimum temperatures for beta-galactosidase activity were 85 and 80 degrees C with oNPG and lactose, respectively. The optimum pH value was 6.5 for both oNPG and lactose. In thermostability experiments, the enzyme followed first-order kinetics of thermal inactivation and its half-life times at 80 and 90 degrees C were 16 h and 16 min, respectively. Mn2+ was the most effective divalent cation for beta-galactosidase activity on both oNPG and lactose. The Km and Vmax values of the thermostable enzyme for oNPG at 80 degrees C were 0.33 mm and 79.6 micromol oNP min(-1) mg(-1). For lactose, the Km and Vmax values were dependent on substrate concentrations; 1.6 and 63.3 at lower concentrations up to 10 mm of lactose and 27.8 mm and 139 micromol glucose min(-1) mg(-1) at higher concentrations, respectively. The enzyme displayed non-Michaelis-Menten reaction kinetics with substrate activation, which was explained by simultaneous reactions of hydrolysis and transgalactosylation. CONCLUSIONS: The results suggest that the thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galacto-oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of hydrolysis and transgalactosylation performed by beta-galactosidase of hyperthermophilic bacteria.  相似文献   

9.
In lysine biosynthesis, dihydrodipicolinate reductase (DHDPR) catalyses the formation of tetrahydrodipicolinate. Unlike DHDPR enzymes from Escherichia coli and Mycobacterium tuberculosis, which have dual specificity for both NADH and NADPH as co-factors, the enzyme from Thermotoga maritima has a significantly greater affinity for NADPH. Despite low sequence identity with the E. coli and M. tuberculosis DHDPR enzymes, DHDPR from T. maritima has a similar catalytic site, with many conserved residues involved in interactions with substrates. This suggests that as the enzyme evolved, the co-factor specificity was relaxed. Kinetic studies show that the T. maritima DHDPR enzyme is inhibited by high concentrations of its substrate, DHDP, and that at high concentrations NADH also acts as an inhibitor of the enzyme, suggesting a novel method of regulation for the lysine biosynthetic pathway. Increased thermal stability of the T. maritima DHDPR enzyme may be associated with the lack of C-terminal and N-terminal loops that are present in the E. coli DHDPR enzyme.  相似文献   

10.
将来源于极端嗜热菌属海栖热袍杆菌Thermotoga maritima MSB8的编码碱性果胶裂解酶的结构基因pelA与新型热激质粒pHsh连接, 得到重组质粒pHsh-pelA, 运用mRNA二级结构预测软件对pHsh-pelA的翻译起始区的二级结构进行优化, 得到了具有最佳mRNA二级结构及自由能的质粒pHsh-pelC。将重组质粒pHsh-pelC转入大肠杆菌JM109(DE3)进行表达, 得到了一种极耐热性碱性果胶裂解酶(PelC)。对重组酶的酶学性质研究发现, 该酶的最适反应温度为90oC, 最适反应pH为8.5, 在pH 8.2~9.8之间酶活力稳定, 95oC酶活半衰期为2 h, 并且该酶依赖Ca2+作为活性离子。在工业生产常用温度60oC下, 该酶能够长时间保持稳定, 并具有较高的酶活力。以多聚半乳糖醛酸(PGA)为底物时, 其动力学参数Km值为0.11 mmol/L, Vmax值为327 U/mg。SDS-PAGE结果显示该重组酶的分子量为43 kD, 与理论值相符。基于热激载体pHsh的重组表达系统具有诱导表达简便、诱导方式廉价的优点, 且重组酶热稳定性非常好, 这对该酶的大规模发酵应用具有重要意义。  相似文献   

11.
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored by nuclear magnetic resonance (NMR) techniques. The chemical shift perturbation data show the probable contacts that CheW makes with CheA. In combination with previous genetic data, the structure also suggests a possible binding site for the chemotaxis receptor. These results provide a structural basis for a model in which CheW acts as a molecular bridge between CheA and the cytoplasmic tails of the receptor.  相似文献   

12.
从海栖热袍菌克隆出编码热稳定性b-葡萄糖醛酸酶基因, 以热激载体pHsh为表达质粒, 在大肠杆菌中得到高效表达。基因表达产物通过一步热处理后, 酶纯度达电泳均一。纯化重组酶酶学性质研究表明, b-葡萄糖醛酸酶的最适反应温度为80oC, 最适反应pH为5.0, pH 5.8~ 8.2之间酶的稳定性较好, 80oC的半衰期为2 h, SDS-PAGE结果显示分子量为65.9 kD, 与理论推算值相吻合。以对硝基苯-b-葡萄糖醛酸苷(pNPG)为底物时, 其动力学参数Km值0.18 mmol/L, Vmax值为312 u/mg。初步的应用分析表明, 该重组酶能催化甘草酸转化为甘草次酸。  相似文献   

13.
The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.  相似文献   

14.
Thermotoga maritima, a thermophilic eubacterium, is motile at temperatures ranging from 50 to 105 degrees C. The cells are propelled by a single flagellum which most of the time spins clockwise. Changes in the swimming direction ("tumbles") are achieved by short reversals of the direction of filament rotation. The average speed of swimming cells depends on the temperature, reaching a maximum value of about 60 microns/s at 85 degrees C. The cells show a thermotactic response to temporal temperature changes. When the temperature is raised, the rate of tumbles is increased, while decreasing temperature decreases the tumbling rate.  相似文献   

15.
从海栖热袍菌扩增出编码乳酸脱氢酶的基因并将其插入热激载体pHsh构建表达质粒,在大肠杆菌Escherichia coli中进行表达产生极耐热性乳酸脱氢酶Tm-LDH。基因表达产物通过热处理,可以一步获得接近电泳纯的重组酶。酶学性质研究表明,Tm-LDH的最适反应温度为95℃,最适pH 7.0;纯酶在90℃的半衰期为2 h,在pH 5.5–8.0之间最稳定;SDS-PAGE结果显示分子量为33 kDa,与理论推算值相吻合。以丙酮酸和NADH为底物时,相对于丙酮酸的Km值1.7 mmol/L,Vmax为3.8×104 U/mg;相对于NADH的Km值7.2 mmol/L,Vmax值为1.1×105 U/mg。Tm-LDH基因在T7载体中未能实现高效表达,但是在热激载体pHsh中得到了可溶性超量表达,表达水平达到340 mg/L。该酶在65℃反应条件下,活性达到最高活性的50%,并能保持活性不变,这使该酶能够与常温酶匹配,在辅酶NAD再生体系的建立中具有广泛的用途。  相似文献   

16.
A gene encoding for a thermostable exopolygalacturonase (exo-PG) from hyperthermophilic Thermotoga maritima has been cloned into a T7 expression vector and expressed in Escherichia coli. The gene encoded a polypeptide of 454 residues with a molecular mass of 51,304 Da. The recombinant enzyme was purified to homogeneity by heat treatment and nickel affinity chromatography. The thermostable enzyme had maximum of hydrolytic activity for polygalacturonate at 95 degrees C, pH 6.0 and retains 90% of activity after heating at 90 degrees C for 5 h. Study of the catalytic activity of the exopolygalacturonase, investigated by means of 1H NMR spectroscopy revealed an inversion of configuration during hydrolysis of alpha-(1-->4)-galacturonic linkage.  相似文献   

17.
An expressed sequence tag homologous to cheA was previously isolated by random sequencing of Thermotoga maritima cDNA clones (C. W. Kim, P. Markiewicz, J. J. Lee, C. F. Schierle, and J. H. Miller, J. Mol. Biol. 231: 960-981, 1993). Oligonucleotides complementary to this sequence tag were synthesized and used to identify a clone from a T. maritima lambda library by using PCR. Two partially overlapping restriction fragments were subcloned from the lambda clone and sequenced. The resulting 5,251-bp sequence contained five open reading frames, including cheA, cheW, and cheY. In addition to the chemotaxis genes, the fragment also encodes a putative protein isoaspartyl methyltransferase and an open reading frame of unknown function. Both the cheW and cheY genes were individually cloned into inducible Escherichia coli expression vectors. Upon induction, both proteins were synthesized at high levels. T. maritima CheW and CheY were both soluble and were easily purified from the bulk of the endogenous E. coli protein by heat treatment at 80 degrees C for 10 min. CheY prepared in this way was shown to be active by the demonstration of Mg(2+)-dependent autophosphorylation with [32P]acetyl phosphate. In E. coli, CheW mediates the physical coupling of the receptors to the kinase CheA. The availability of a thermostable homolog of CheW opens the possibility of structural characterization of this small coupling protein, which is among the least well characterized proteins in the bacterial chemotaxis signal transduction pathway.  相似文献   

18.
Inositol monophosphatase (I-1-Pase) catalyzes the dephosphorylation step in the de novo biosynthetic pathway of inositol and is crucial for all inositol-dependent processes. An extremely heat-stable tetrameric form of I-1-Pase from the hyperthermophilic bacterium Thermotoga maritima was overexpressed in Escherichia coli. In addition to its different quaternary structure (all other known I-1-Pases are dimers), this enzyme displayed a 20-fold higher rate of hydrolysis of D-inositol 1-phosphate than of the L isomer. The homogeneous recombinant T. maritima I-1-Pase (containing 256 amino acids with a subunit molecular mass of 28 kDa) possessed an unusually high V(max) (442 micromol min(-1) mg(-1)) that was much higher than the V(max) of the same enzyme from another hyperthermophile, Methanococcus jannaschii. Although T. maritima is a eubacterium, its I-1-Pase is more similar to archaeal I-1-Pases than to the other known bacterial or mammalian I-1-Pases with respect to substrate specificity, Li(+) inhibition, inhibition by high Mg(2+) concentrations, metal ion activation, heat stability, and activation energy. Possible reasons for the observed kinetic differences are discussed based on an active site sequence alignment of the human and T. maritima I-1-Pases.  相似文献   

19.
Huang J  Lu J  Barany F  Cao W 《Biochemistry》2002,41(26):8342-8350
Endonuclease V nicks damaged DNA at the second phosphodiester bond 3' to inosine, uracil, mismatched bases, or abasic (AP) sites. Alanine scanning mutagenesis was performed in nine conserved positions of Thermotoga maritima endonuclease V to identify amino acid residues involved in recognition or endonucleolytic cleavage of these diverse substrates. Alanine substitution at D43, E89, and D110 either abolishes or substantially reduces inosine cleavage activity. These three mutants gain binding affinity for binding to double-stranded or single-stranded inosine substrates in the absence of a metal ion, suggesting that these residues may be involved in coordinating catalytic metal ion(s). Y80A, H116A, and, to a lesser extent, R88A demonstrate reduced affinities for double-stranded or single-stranded inosine substrates or nicked products. The lack of tight binding to a nicked inosine product accounts for the increased rate of turnover of inosine substrate since the product release is less rate-limiting. Y80A, R88A, and H116A fail to cleave AP site substrates. Their activities toward uracil substrates are in the following order: H116A > R88A > Y80A. These residues may play a role in substrate recognition. K139A maintains wild-type binding affinity for binding to double-stranded and single-stranded inosine substrate, but fails to cleave AP site and uracil substrate efficiently, suggesting that K139 may play a role in facilitating non-inosine substrate cleavage.  相似文献   

20.
A putative cytosolic alpha-mannosidase gene from a hyperthermophilic marine bacterium Thermotoga maritima was cloned and expressed in Escherichia coli. The purified recombinant enzyme appeared to be a homodimer of a 110-kDa subunit. The enzyme showed metal-dependent ability to hydrolyze p-nitrophenyl-alpha-D-mannopyranoside. In the absence of a metal, the enzyme was inactive. Cobalt and cadmium supported high activity (60 U/mg at 70 degrees C), while the activity with zinc and chromium was poor. Cobalt (0.8 mol) bound to 1 mol monomer with a K(d) of 70 microM. The optimum pH and temperature were 6.0 and 80 degrees C, respectively. The activity was inhibited by swainsonine, but not by 1-deoxymannojirimycin, which is in agreement with the features of cytosolic alpha-mannosidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号