首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Thompson  E B Ziff 《Neuron》1989,2(1):1043-1053
We have cloned the rat gene encoding peripherin, a neuronal-specific intermediate filament protein that is NGF-regulated. Determination of the complete sequence, including 821 nucleotides of the 5'-flanking region, allows us to make conclusions about the evolutionary origin of the peripherin gene, its homology with other intermediate filament proteins, and possible mechanisms of regulation of peripherin expression in neurons. The positions of the eight peripherin gene introns correspond to the intron patterns of desmin, vimentin, and GFAP, with one example of intron sliding. Together with protein sequence homologies, this conclusively demonstrates that peripherin is a type III intermediate filament protein. The peripherin promoter contains sequences homologous to regions of other NGF-regulated promoters, which may function in peripherin induction by NGF.  相似文献   

2.
3.
Peripherin is a type III neuronal intermediate filament protein detected within the intraneuronal inclusions characteristic of amyotrophic lateral sclerosis. The constitutively expressed peripherin isoform is encoded by all nine exons of the human and mouse peripherin genes to generate a protein species of ∼58 kDa on sodium dodecyl sulfate–polyacrylamide gels. Expression of this isoform, termed Per-58, generates a filament network in transfected SW13 vim cells. On immunoblots of cell lysates derived from these transfected cells, we have consistently observed a second peripherin species of ∼45 kDa. In this study, we show that this species is a novel peripherin isoform generated through the use of an in-frame downstream initiation codon. This isoform, that we have designated Per-45, is co-expressed together with Per-58 and, thus, constitutive in both human and mouse. Using mutational analysis, we show that Per-45 is required for normal network formation, with the absence of Per-45 leading to irregular filamentous structures. We further show that peripherin expression in the normal nervous system is characterized by tissue-specific Per-58 : Per-45 isoform ratios. Taken together, these results identify novel processing requirements for peripherin expression and indicate a hitherto unrecognized role for neuronal intermediate filament network formation through intra-isoform associations.  相似文献   

4.
Using a mouse cDNA probe encoding for the major part of peripherin, a type III intermediate filament protein, we have assigned, by in situ hybridization, the mouse and human peripherin genes, Prph, to the E-F region of chromosome 15 and to the q12-q13 region of chromosome 12, respectively. These regions are known as homologous chromosomal segments containing other intermediate filament genes (keratins) and also other genes which could be co-ordinately regulated.  相似文献   

5.
Peripherin, an intermediate filament protein, described recently, is expressed in well defined neuronal populations. We studied the phosphorylation, in vivo, of this protein in mouse neuroblastoma NIE 115 cell line and in sympathetic neurons labelled with [32P]-orthophosphate. The autoradiograms of proteins separated on two-dimensional polyacrylamide gels were compared with the Coomassie-blue stainings. The results show that peripherin occurs as a mixture of phosphorylated and non-phosphorylated isoforms, and that these forms coexist in both differentiated and non-differentiated cells. We demonstrate by cleavage at the unique tryptophan residue, a characteristic shared by most other intermediate filament proteins (IFP), that the phosphorylation sites are located on the amino-terminal half of peripherin as it is for vimentin and desmin. These results are discussed in relation to the organization of the filamentous network constituted by peripherin.  相似文献   

6.
Several types of intermediate filament proteins are expressed in developing and mature neurons; they cooperate with other cytoskeletal components to sustain neuronal function from early neurogenesis onward. In this work the timing of expression of nestin, peripherin, internexin, and the neuronal intermediate filament triplet [polypeptide subunits of low (NF-L), medium (NF-M), and high (NF-H) molecular weight] was investigated in the developing fetal and postnatal mouse vomeronasal organ (VNO) by means of immunohistochemistry. The results show that the sequence of expression of intermediate filament proteins is internexin, nestin, and NF-M in the developing vomeronasal sensory epithelium; internexin, peripherin, and NF-M in the developing vomeronasal nerve; and nestin, internexin and peripherin, NF-L, and NF-M in the nerve supply to accessory structures of the VNO. At sexual maturity (2 months) NF-M is only expressed in vomeronasal neurons and NF-M, NF-L and peripherin are expressed in extrinsic nerves supplying VNO structures. The differential distribution of intermediate filament proteins in the vomeronasal sensory epithelium and nerve is discussed in terms of the cell types present therein. It is concluded that several intermediate filament proteins are sequentially expressed during intrauterine development of the VNO neural structures in a different pattern according to the different components of the VNO.  相似文献   

7.
Neurofilaments are the principal intermediate filament type expressed by neurons. They are formed by the co-assembly of three subunits: NF-L, NF-M, and NF-H. Peripherin is another intermediate filament protein expressed mostly in neurons of the peripheral nervous system. In contrast to neurofilaments, peripherin can self-assemble to establish an intermediate filament network in cultured cells. The co-expression of neurofilaments and peripherin is found mainly during development and regeneration. We used SW13 cells devoid of endogenous cytoplasmic intermediate filaments to assess the exact assembly characteristics of peripherin with each neurofilament subunit. Our results demonstrate that peripherin can assemble with NF-L. In contrast, the co-expression of peripherin with the large neurofilament subunits interferes with peripherin assembly. These results confirm the existence of interactions between peripherin and neurofilaments in physiological conditions. Moreover, they suggest that perturbations in the stoichiometry of neurofilaments can have an impact on peripherin assembly in vivo.  相似文献   

8.
Peripherin is a neuronal intermediate filament associated with inclusion bodies in motor neurons of patients with amyotrophic lateral sclerosis (ALS). A possible peripherin involvement in ALS pathogenesis has been suggested based on studies with transgenic mouse overexpressors and with a toxic splicing variant of the mouse peripherin gene. However, the existence of peripherin gene mutations in human ALS has not yet been documented. Therefore, we screened for sequence variants of the peripherin gene (PRPH) in a cohort of ALS patients including familial and sporadic cases. We identified 18 polymorphic variants of PRPH detected in both ALS and age-matched control populations. Two additional PRPH variants were discovered in ALS cases but not in 380 control individuals. One variant consisted of a nucleotide insertion in intron 8 (PRPH(IVS8)(-36insA)), whereas the other one consisted of a 1-bp deletion within exon 1 (PRPH(228delC)), predicting a truncated peripherin species of 85 amino acids. Remarkably, expression of this frameshift peripherin mutant in SW13 cells resulted in disruption of neurofilament network assembly. These results suggest that PRPH mutations may be responsible for a small percentage of ALS, cases and they provide further support of the view that neurofilament disorganization may contribute to pathogenesis.  相似文献   

9.
To date, the functions of most neural intermediate filament (IF) proteins have remained elusive. Peripherin is a type III intermediate filament (IF) protein that is expressed in developing and in differentiated neurons of the peripheral and enteric nervous systems. It is also the major IF protein expressed in PC12 cells, a widely used model for studies of peripheral neurons. Dramatic increases in peripherin expression have been shown to coincide with the initiation and outgrowth of axons during development and regeneration, suggesting that peripherin plays an important role in axon formation. Recently, small interfering RNAs (siRNA) have provided efficient ways to deplete specific proteins within mammalian cells. In this study, it has been found that peripherin-siRNA depletes peripherin and inhibits the initiation, extension, and maintenance of neurites in PC12 cells. Furthermore, the results of these experiments demonstrate that peripherin IF are critical determinants of the overall shape and architecture of neurons.  相似文献   

10.
11.
Peripherin is a 57 kDa Type III intermediate filament protein associated with neurite extension, neuropathies such as amyotrophic lateral sclerosis, and cranial nerve and dorsal root projections. However, knowledge of peripherin expression in the CNS is limited. We have used immunoperoxidase histochemistry to characterise peripherin expression in the mouse hindbrain, including the inferior colliculus, pons, medulla and cerebellum. Peripherin immunolabelling was observed in the nerve fibres and nuclei that are associated with all cranial nerves [(CN) V–XII] in the hindbrain. Peripherin expression was prominent in the cell bodies and axons of the mesenchephalic trigeminal nucleus and the pars compacta region of nucleus ambiguus, and in the fibres that comprise the solitary tract, the descending spinal trigeminal tract and the trigeminal and facial nerves. A small proportion of peripherin positive fibres in CN VIII likely arise from cochlear type II spiral ganglion neurons. Peripherin positive fibres were also observed in the inferior cerebellar peduncle and folia in the intermediate zone of the cerebellum. Antibody specificity was confirmed by absence of labelling in hindbrain tissue from peripherin knockout mice. This study shows that in the adult mouse hindbrain, peripherin is expressed in discrete neuronal subpopulations that have sensory, motor and autonomic functions.  相似文献   

12.
Peripherin, a recently described member of the intermediate filament multigene family, is present in peripheral and certain central nervous system neurons as well as in cultured neuron-like cell lines, including PC12 pheochromocytoma cells. In PC12 cells, peripherin appears to be the major intermediate filament protein and its relative levels and synthesis are specifically increased during nerve growth factor (NGF)-promoted neuronal differentiation. The present study examines the phosphorylation of peripherin and the regulation thereof by nerve growth factor and other agents in cultured PC12 cells. Immunoblotting experiments using a peripherin-specific antiserum show five distinct isoforms of this protein in whole cell and cytoskeletal extracts resolved by two-dimensional isoelectric focusing sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Three of these isoforms incorporate detectable quantities of [32P]phosphate during metabolic radiolabeling. The small proportion (approximately 6%) of total cellular peripherin that is extractable with 1% Triton X-100, does not appear to incorporate phosphate. NGF increases peripherin phosphorylation by 2-3-fold within 1-2 h of treatment. Epidermal growth factor and insulin have no effect. The relative levels of phosphorylated peripherin are markedly elevated (17-fold) by long term NGF exposure, and peripherin becomes a major cytoskeletal phosphoprotein. Activators of protein kinases A and C and treatment with depolarizing levels of K+ also enhance peripherin phosphorylation by 2-3-fold, in cultures both with and without prior long term NGF treatment. Evidence is presented that NGF regulates peripherin phosphorylation by a mechanism independent of protein kinases A and C and of depolarization. The large increase in phosphorylated peripherin brought about by NGF treatment suggests that this neuronal filament protein may play a role in the elaboration and maintenance of neurites. The presence of multiple independent pathways that acutely enhance peripherin phosphorylation indicates that this role is subject to modulation by extrinsic signals.  相似文献   

13.
Errante  L  Tang  D  Gardon  M  Sekerkova  G  Mugnaini  E  Shaw  G 《Brain Cell Biology》1998,27(2):69-84
Immunocytochemical staining with antibodies to the class III intermediate filament protein peripherin reveals discrete subpopulations of neurons and nerve fibres throughout the rat central nervous system. Some of these fibres enter the cerebellar granular and molecular layers. Here we use light and electron microscopic immunocytochemistry and confocal fluorescence microscopy to identify the peripherin positive fibres in the molecular layer of the cerebella of various mammals. 1) The peripherin positive fibres in the molecular layer have morphological attributes of climbing fibres, and peripherin positive fibres are also detected in the olivo-cerebellar tract. Furthermore peripherin positive neurons can be seen in the inferior olive, from which climbing fibres originate. (2 ) The peripherin positive molecular layer fibres rapidly degenerate in rats treated with 3-acetylpyridine (3-AP), a reagent which destroys neurons in the inferior olive, and the time course of degeneration of these mirrors that previously described for 3-AP induced destruction of climbing fibres. (3) Cerebella of other mammal species tested (mouse, rabbit, pig, cow and human) revealed a similar peripherin staining pattern in the cerebellum, including fibres in the molecular layer with the morphology of climbing fibres. (4) We also noted peripherin positive spinocerebellar and vestibulocerebellar mossy fibres in the cerebellar granular layer of folia known to receive these inputs. (5) A subset of perivascular nerve fibres are also peripherin positive. These results show that peripherin is a useful marker for mammalian cerebellar climbing fibres, and that a subset of morphologically distinct cerebellar mossy fibres are also peripherin positive.  相似文献   

14.
15.
Peripherin is an intermediate filament protein expressed in restricted populations of neurons. Our previous study of the chromatin structure of the mouse peripherin gene in cells that do or do not express peripherin suggested that the region located between -1,500 and +800 bp of the gene could be involved in its cell specificity. In the present work, we performed an in vitro functional analysis of the 5' flanking region of the mouse peripherin gene and observed that this region up to 9 kb contained both enhancer and inhibiting activities; however, it was insufficient to achieve a complete extinction of reporter gene expression in peripherin-negative cells. Furthermore, analysis of the first three introns with the 5' flanking sequences of the gene showed that intron I greatly increased specificity of the gene expression. Intron I also conferred the same properties to thymidine kinase heterologous promoter. DNase I footprinting experiments performed with intron I revealed at least two protected regions (Inl A and Inl B). Inl A encompasses an AP-2-like binding site that interacted with both neuroblast and fibroblast nuclear factors, as well as with the recombinant AP-2alpha protein. However, gel shift experiments suggested that the interacting nuclear factors are distinct from AP-2alpha itself and probably belong to the AP-2 family. Inl B perfectly matched the consensus binding site for Sp1 and specifically interacted with nuclear protein factors that showed the same binding properties as the Sp1 family members. Fine deletion analysis of intron I indicated that the Inl A element alone is responsible for its enhancing properties, whereas a region located between +789 and +832 gives to intron I its silencer activity.  相似文献   

16.
Summary The mammalian pineal gland contains pinealocytes, interstitial glial cells, perivascular macrophages, neurons and neuron-like cells. The neuronal identity of neurons and neuron-like cells was an enigma. α-Internexin and peripherin are specific neuronal intermediate filament proteins and are expressed differentially in the CNS and PNS. We investigated the development of immunoreactivity and expression patterns of mRNAs for α-internexin and peripherin in the mouse pineal gland to determine the neuronal identity of these cells. Both α-internexin- and peripherin-immunoreactive cells were readily visualized only after birth. Both proteins were at the highest level on the postnatal day 7 (P7), rapidly declined at P14, and obtained their adult level at P21. Both protein and mRNA of α-internexin are expressed in some cells and nerve processes, but not all, of adult mouse pineal gland. Less number of peripherin immunoreactive or RNA-expressing cells and nerve processes were identified. Accumulations of α-internexin and peripherin proteins were also found in the cells from the aged pineal gland (P360). We concluded that some cells in the developing mouse pineal gland may differentiated into neurons and neuron-like cells expressing both α-internexin and/or peripherin only postnatally, and these cells possess dual properties of CNS and PNS neurons in nature. We suggested that they may act as interneurons between the pinealocyte and the distal neurons innervating the pinealocytes, or form a local circuitry with pinealocytes to play a role of paracrine regulatory function on the pinealocytes.  相似文献   

17.
Pathways to motor neuron degeneration in transgenic mouse models   总被引:5,自引:0,他引:5  
Robertson J  Kriz J  Nguyen MD  Julien JP 《Biochimie》2002,84(11):1151-1160
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.  相似文献   

18.
Peripherin Is Tyrosine-Phosphorylated at Its Carboxyl-Terminal Tyrosine   总被引:1,自引:0,他引:1  
Abstract: Peripherin is a type III intermediate filament present in peripheral and certain CNS neurons. We report here that peripherin contains a phosphotyrosine residue and, as such, is the only identified intermediate filament protein known to be modified in this manner. Antiserum specific for phosphotyrosine recognizes peripherin present in PC12 cells (with or without nerve growth factor treatment) and in rat sciatic nerve as well as that expressed in Sf-9 cells and SW-13 cl. 2 vim cells. The identity of peripherin as a tyrosine-phosphorylated protein in PC12 cells was confirmed by immunoprecipitation, two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels, and phosphoamino acid analysis. Unlike serine/threonine phosphorylation, tyrosine phosphorylation of peripherin is not regulated by depolarization or nerve growth factor treatment. To identify the site of tyrosine phosphorylation, rat peripherin was mutated at several tyrosine residues and expressed in SW-13 cl. 2 vim cells. Tyrosine phosphorylation was selectively lost only for peripherin mutants in which the carboxy-terminal tyrosine (Y474) was mutated. Indirect immunofluorescence staining indicated that both wild-type peripherin and peripherin Y474F form a filamentous network in SW-13 cl. 2 vim cells. This indicates that tyrosine phosphorylation of the peripherin C-terminal residue is not required for assembly and leaves open the possibility that this modification serves other functions.  相似文献   

19.
J D Gorham  E B Ziff  H Baker 《Neuron》1991,7(3):485-497
Olfactory receptor neurons (ORNs) do not express the typical neuronal intermediate filament proteins (IFPs), the neurofilament triplet proteins. Immunocytochemical evidence shows that ORNs coexpress vimentin and peripherin but distribute them differently. Specifically, ORNs contain vimentin in dendrites, cell bodies, and axons, but not in terminals in glomeruli; peripherin is present in axons, but excluded from dendrites, cell bodies, and terminal glomeruli. In adult rats, ORN axon fascicles are variably stained with antisera for peripherin; in juvenile rats, staining of fascicles is uniform. Staining with antibody to vimentin is uniform in both adult and juvenile ORN axon fascicles. The unusual pattern of IFP expression and intracellular sorting may have implications for the unique plastic and regenerative capacities of these neurons.  相似文献   

20.
The mouse monoclonal antibody ME 101 raised against human peripherin, an intermediate filament protein (IFP) specific to well defined neuronal populations, recognizes all the major classes of vertebrate IFP in immunoblotting assays. Desmin, GFAP, vimentin, peripherin and the lightest neurofilament protein (NF-L) were cleaved into carboxy- and amino-terminal halves by N-chlorosuccinimide at their unique trytophan residue. Whereas the antibody directed against the epitope common to every IFP (intermediate filament antigen or IFA) and located on the carboxy-terminal end of the rod domain recognizes the carboxy-terminal half, the ME 101 antibody, as the present study illustrates, recognizes specifically the amino-terminal half. From the amino acid sequence data of IFP, it is deduced that the cognate epitope is localized on the amino-terminal part of coil la.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号