首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemicellulose liquid hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol using Pichia stipitis CBS 6054. The fermentation rate increased with aeration but the pH also increased due to consumption of acetic acid by Pichia stipitis. Hemicellulose hydrolyzate containing 34 g/L xylose, 8 g/L glucose, 8 g/L Acetic acid, 0.73 g/L furfural, and 1 g/L hydroxymethyl furfural was fermented to 15 g/L ethanol in 72 h. The yield in all the hemicellulose hydrolyzates was 0.37–0.44 g ethanol/g (glucose + xylose). Nondetoxified hemicellulose hydrolyzate from dilute acid pretreated corn stover was fermented to ethanol with high yields, and this has the potential to improve the economics of the biomass to ethanol process.  相似文献   

2.
The Clostridium acetobutylicum xylanase gene xyn10B (CAP0116) was cloned from the type strain ATCC 824, whose genome was recently sequenced. The nucleotide sequence of C. acetobutylicum xyn10B encodes a 318-amino acid protein. Xyn10B consists of a single catalytic domain that belongs to family 10 of glycosyl hydrolases. The enzyme was purified from recombinant Escherichia coli. The Xyn10B enzyme was highly active toward birchwood xylan, oat-spelt xylan, and moderately active toward avicel, carboxymethyl cellulose, polygalacturonic acid, lichenan, laminarin, barley--glucan and various p-nitrophenyl monosaccharides. Xyn10B hydrolyzed xylan and xylooligosaccharides to produce xylobiose and xylotriose. The pH optimum of Xyn10B was 5.0, and the optimal temperature was 70°C. The enzyme was stable at 60°C at pH 5.0–6.5 for 1 h without substrate. This is one of a number of xylan-related activities encoded on the large plasmid in C. acetobutylicum ATCC 824.  相似文献   

3.
As a first step in the research on ethanol production from lignocellulose residues, sugar fermentation by Fusarium oxysporum in oxygen-limited conditions is studied in this work. As a substrate, solutions of arabinose, glucose, xylose and glucose/xylose mixtures are employed. The main kinetic and yield parameters of the process are determined according to a time-dependent model. The microorganism growth is characterized by the maximum specific growth rate and biomass productivity, the substrate consumption is studied through the specific consumption rate and biomass yield, and the product formation via the specific production rate and product yields. In conclusion, F. oxysporum can convert glucose and xylose into ethanol with product yields of 0.38 and 0.25, respectively; when using a glucose/xylose mixture as carbon source, the sugars are utilized sequentially and a maximum value of 0.28 g/g ethanol yield is determined from a 50% glucose/50% xylose mixture. Although fermentation performance by F.␣oxysporum is somewhat lower than that of other fermenting microorganisms, its ability for simultaneous lignocellulose-residue saccharification and fermentation is considered as a potential advantage.  相似文献   

4.
The growth of Alkaliflexus imshenetskii and concentrations of metabolites produced by this microorganism during growth on various organic substrates were studied. It was shown that, although the composition and quantitative ratios of the fermentation products depended on the substrates utilized, acetate and succinate were always the major metabolites, while only minor amounts of formate were produced. During growth on xylan and starch, diauxy was observed caused by the successive decomposition of oligosaccharides and monosaccharides. It was demonstrated that, when grown on cellobiose, A. imshenetskii is capable of succinate fermentation mediated by phosphoenolpyruvate carboxykinase, pyruvate kinase, fumarate reductase, pyruvate ferredoxin oxidoreductase, malate dehydrogenase, and methylmalonyl-CoA decarboxylase. Succinate may be both the intermediate and final product of the A. imshenetskii metabolism, being fermented to propionate by methylmalonyl-CoA decarboxylase.  相似文献   

5.
A brewery spent-grain hemicellulosic hydrolysate was used for xylitol production by Debaryomyces hansenii. Addition of 6 g yeast extract/l increased the xylitol yield to 0.57 g/g, and productivity to 0.51 g/l h that were, respectively, 1.4 -and 1.8-times higher than the values obtained with non-supplemented hydrolysate. When corn steep liquor was combined with 3 g yeast extract/l, the highest xylitol yield, 0.58 g/g, was obtained with a similar productivity.  相似文献   

6.
Cytochromes c were found in the cells of the bacterium Geobacter sulfurreducens AM-1 grown on acetate and methacrylate. The periplasmic extract of G. sulfurreducens AM-1 contained about 88% of the total content of cytochromes c of intact cells. The analysis of cytochromes c from the native cells of G. sulfurreducens AM-1, from the periplasmic extract and from the cells treated by an alkaline solution showed the presence of nine proteins containing heme c. The molecular masses of cytochromes c from G. sulfurreducens AM-1 were 12.5, 15.5, 25.7, 29.5, 34.7, 41.7, 50.1, 63.1, and 67.6 kDa; localization of each cytochrome c was determined. Three heme-containing proteins (15.5 kDa, 25.7 kDa, and 29.5 kDa with the most intensive staining) were present mainly in the periplasm of the bacterium. The other two (50.1 and 67.6 kDa) were supposedly localized in the cell membrane. Cytochromes c with the molecular masses of 12.5, 15.5, and 67.6 kDa are considered as possible components of the methacrylate redox system of G. sulfurreducens AM-1.  相似文献   

7.
A robust Saccharomyces cerevisiae strain has been widely applied in continuous and batch/fed-batch industrial fermentation. However, little is known about the molecular basis of fermentative behavior of this strain in the two realistic fermentation processes. In this paper, we presented comparative proteomic profiling of the industrial yeast in the industrial fermentation processes. The expression levels of most identified protein were closely interrelated with the different stages of fermentation processes. Our results indicate that, among the 47 identified protein spots, 17 of them belonging to 12 enzymes were involved in pentose phosphate, glycolysis, and gluconeogenesis pathways and glycerol biosynthetic process, indicating that a number of pathways will need to be inactivated to improve ethanol production. The differential expressions of eight oxidative response and heat-shock proteins were also identified, suggesting that it is necessary to keep the correct cellular redox or osmotic state in the two industrial fermentation processes. Moreover, there are significant differences in changes of protein levels between the two industrial fermentation processes, especially these proteins associated with the glycolysis and gluconeogenesis pathways. These findings provide a molecular understanding of physiological adaptation of industrial strain for optimizing the performance of industrial bioethanol fermentation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
The thermophilic bacterium Thermoanaerobacter tengcongensis has two single-stranded DNA-binding (SSB) proteins, designated TteSSB2 and TteSSB3. In a SSB complementation assay in Escherichia coli, only TteSSB3 took over the in vivo function of EcoSSB. We have cloned the ssb genes obtained by PCR and have developed E. coli overexpression systems. The TteSSB2 and TteSSB3 consist of 153 and 150 amino acids with a calculated molecular mass of 17.29 and 16.96 kDa, respectively. They are the smallest known bacterial SSB proteins. The homology between amino acid sequences of these proteins is 40% identity and 53% similarity. They are functional as homotetramers, with each monomer encoding one single-stranded DNA binding domain (OB-fold). In fluorescence titrations with poly(dT), both proteins bind single-stranded DNA with a binding site size of about 40 nt per homotetramer. Thermostability with half-life of about 30 s at 95 degrees C makes TteSSB3 similar to the known SSB of Thermus aquaticus (TaqSSB). The TteSSB2 was fully active even after 6 h incubation at 100 degrees C. Here, we show for the first time paralogous thermostable homotetrameric SSBs, which could be an attractive alternative for known homodimeric thermostable SSB proteins in their applications for molecular biology methods and analytical purposes.  相似文献   

9.
Rhodobacter capsulatus was used for the phototrophic hydrogen production on effluent solution derived from the thermophilic fermentation of Miscanthus hydrolysate by Thermotoga neapolitana. Pretreatments such as centrifugation, dilution, buffer addition, pH adjustment and sterilization were suggested for the effluent before being fed to the photofermentation. Batch-wise experiments showed that R. capsulatus grows and produces hydrogen on the pretreated effluent solution. Moreover, it was found that the hydrogen yield increased from 0.3 to 1.0 L/Lculture by addition of iron to the effluent solution.  相似文献   

10.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

11.

Background  

In Saccharomyces cerevisiae galactose is initially metabolized through the Leloir pathway after which glucose 6-phosphate enters glycolysis. Galactose is controlled both by glucose repression and by galactose induction. The gene PGM2 encodes the last enzyme of the Leloir pathway, phosphoglucomutase 2 (Pgm2p), which catalyses the reversible conversion of glucose 1-phosphate to glucose 6-phosphate. Overexpression of PGM2 has previously been shown to enhance aerobic growth of S. cerevisiae in galactose medium.  相似文献   

12.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

13.
This study aimed at examining and comparing the relevance of various methods in order to discriminate different cellular states of Lactobacillus bulgaricus CFL1 and to improve knowledge on the dynamics of the cellular physiological state during growth and acidification. By using four fluorescent probes combined with multiparametric flow cytometry, membrane integrity, intracellular esterase activity, cellular vitality, membrane depolarization, and intracellular pH were quantified throughout fermentations. Results were compared and correlated with measurements of cultivability, acidification activity (Cinac system), and cellular ability to recover growth in fresh medium (Bioscreen system). The Cinac system and flow cytometry were relevant to distinguish different physiological states throughout growth. Lb. bulgaricus cells maintained their high viability, energetic state, membrane potential, and pH gradient in the late stationary phase, despite the gradual decrease of both cultivability and acidification activity. Viability and membrane integrity were maintained during acidification, at the expense of their cultivability and acidification activity. Finally, this study demonstrated that the physiological state during fermentation was strongly affected by intracellular pH and the pH gradient. The critical pHi of Lb. bulgaricus CFL1 was found to be equal to pH 5.8. Through linear relationships between dpH and cultivability and pHi and acidification activity, pHi and dpH well described the time course of metabolic activity, cultivability, and viability in a single analysis.  相似文献   

14.
The metabolism of the novel facultatively anaerobic thermophilic bacterium Oceanithermus profundus was studied during growth on maltose, acetate, pyruvate, and hydrogen. The utilization of carbohydrates was shown to proceed via the glycolytic pathway. Under microaerobic growth conditions, the metabolism of O. profundus grown on maltose depended on the substrate concentration. At an initial maltose concentration of 1.4 mM, O. profundus carried out oxygen respiration, and in the presence of 3.5 mM maltose, facilitated fermentation occurred, with the formation of acetate and ethanol and limited involvement of oxygen. The use of pyruvate and acetate occurred via the TCA cycle. In cells grown on acetate, the activity of glyoxylate pathway enzymes was revealed. Depending on the energy-yielding process providing for growth (oxygen respiration or nitrate reduction), cells contained cytochromes a and c or b, respectively. The results obtained demonstrate the plasticity of the metabolism of O. profundus, which thus appears to be well-adjusted to the rapidly changing conditions in deep-sea hydrothermal vents.  相似文献   

15.
Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a d-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. d-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 gxylitol/gxylose) and volumetric productivity (0.18 gxylitol/gxylose l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.  相似文献   

16.
Ethanol production by Clostridium thermocellum ATCC 35609 and Saccharomyces cerevisiae ATCC 26603 was improved in an electrochemical bioreactor system. It was increased by 61% with Cl. thermocellum and 12% with S. cerevisiae in the presence of -1.5 V of electric potential. These increases were attributed to high production rates due to regeneration and availability of increased reduced equivalents in the presence of electric potential. The electric current caused considerable shift in the metabolite concentrations on a molar basis in Cl. thermocellum fermentation but less in S. cerevisiae fermentation. Increasing electric potential in Cl. thermocellum fermentation resulted in less acetate and more lactate production. Acetate production was also reduced with increased electric potential in S. cerevisiae fermentation. The high electric potential of -5 V adversely affected the Cl. thermocellum fermentation, but not the S. cerevisiae fermentation even at a high electric potential of -10 V.  相似文献   

17.
18.
By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.  相似文献   

19.
This study examines the interactions that occur between Saccharomyces cerevisiae and Oenococcus oeni strains during the process of winemaking. Various yeast/bacteria pairs were studied by applying a sequential fermentation strategy which simulated the natural winemaking process. First, four yeast strains were tested in the presence of one bacterial strain leading to the inhibition of the bacterial component. The extent of inhibition varied widely from one pair to another and closely depended on the specific yeast strain chosen. Inhibition was correlated to weak bacterial growth rather than a reduction in the bacterial malolactic activity. Three of the four yeast strains were then grown with another bacteria strain. Contrary to the first results, this led to the bacterial stimulation, thus highlighting the importance of the bacteria strain. The biochemical profile of the four yeast fermented media exhibited slight variations in ethanol, SO(2) and fatty acids produced as well as assimilable consumed nitrogen. These parameters were not the only factors responsible for the malolactic fermentation inhibition observed with the first bacteria strain. The stimulation of the second has not been reported before in such conditions and remains unexplained.  相似文献   

20.
Novel rhamnolipid-producing strains of three thermophilic bacteria, Thermus sp., T. aquaticus and Meiothermus ruber were identified that have not been previously described as rhamnolipid producers. Rhamnolipids were extracted from supernatant and further purified by thin-layer chromatography. Mass spectrometry with negative electrospray ionization revealed 77 rhamnolipid homologues varying in chain length and unsaturation. Tandem mass spectrometry identified mono-rhamnolipid and di-rhamnolipid homologues containing one or two 3-hydroxy-fatty acids, saturated, monounsaturated or diunsaturated, even- or odd-chain, up to unusual long chains with 24 carbon atoms. The stereochemistry of rhamnose was L and that of 3-hydroxy-fatty acids was R, the position of double bonds in monoenoic acids was cis ω-9. All three strains produced a rhamnolipid that differs in structure from Pseudomonas aeruginosa rhamnolipids and exhibits excellent surfactant properties. Importantly, in comparison to P. aeruginosa both strains, i.e., Thermus and Meiothermus, are Biosafety level 1 microorganisms and are not pathogenic to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号