首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climate change and human impacts are often implicated in Quaternary megafaunal extinctions. The discovery of associated remains of extinct giant short-faced bears (Arctodus simus) and invading brown bears (Ursus arctos) raises the possibility of competition as another potential factor. We describe fossil remains of both genera from Pellucidar Cave, Vancouver Island, Canada. Analyses of ancient mitochondrial DNA support the identifications of post-cranial brown bear specimens and assign these bears to Clade 4. Our results are consistent with the migration of brown bears from Eastern Beringia to the contiguous United States before the Last Glacial Maximum (LGM) and to Vancouver Island as environmental conditions became favorable after the LGM. Radiocarbon age estimates on these specimens indicate the presence of giant short-faced bears approximately 13.5 thousand calibrated years before present (cal. ka BP; uncalibrated 11,775 ± 30, 11,720 ± 50, and 11,615 ± 30 BP) and of brown bears immediately preceding (~14.5 cal. ka BP; 12,440 ± 35, 12,425 ± 30 BP) and following this time (~13 cal. ka BP; uncal. 11,100 ± 30 BP), suggesting niche partitioning to reduce competition among these species. We suggest that shifts in food availability or quality due to post-glacial vegetation and faunal changes were probably of primary importance in the arrival and the disappearance of giant short-faced bears on Vancouver Island. This study focuses on a key time period and geographic location that is useful in understanding Pleistocene extinctions in North America.  相似文献   

2.
《Palaeoworld》2014,23(3-4):357-369
The analysis of fossil palynomorh assemblages in the Late Miocene freshwater sediments of the Sofia Basin (West Bulgaria) was done to collect data on the vegetation and climate dynamics during the Late Miocene. On the basis of pollen data, we described the main palaeocomunities developed in the region. The mixed mesophytic forests dominated the vegetation in which species of Quercus, Ulmus, Zelkova, Fagus, Carpinus, Betula, Castanea, Corylus, Pterocarya, Carya, Juglans, and Eucommia played important roles. Swamp forests were also recorded, including Taxodiaceae, Alnus, Glyptostrobus, Nyssa, and Myrica. Herbaceous vegetation was distributed in the middle part of the section, with a maximum of 35.5%. The vegetation dynamic passes through several phases, which were associated with changes in paleoclimate and palaeoecological conditions. Coexistence Approach (CA) was applied to palynological data to calculate four climatic parameters. The values of coexistence intervals for mean annual temperatures are 13.6–16.6 °C, with winter temperatures being 3.7–6.6 °C and summer temperatures being 23.6–27.8 °C. Mean annual precipitation ranged most frequently between 828 and 1308 mm. The palaeoclimatic reconstruction illustrates existence of a warm-temperate and relatively humid climate with higher mean annual temperature than the present day climate.  相似文献   

3.
A high resolution micropalaeontological study of the core MD 04-2797 CQ recovered in the Sicilian–Tunisian Strait provides insights into the paleoclimatic history of the Mediterranean Sea at the transition between the western and eastern basin over the last 30 ka. Using the analysis of dinoflagellate cyst and planktonic foraminiferal assemblages, we reconstruct the paleoenvironmental changes that took place in this region. High abundances of cold temperate dinocyst species (Nematosphaeropsis labyrinthus, Spiniferites elongatus, Bitectatodinium tepikiense) and the polar planktonic foraminifera Neogloboquadrina pachyderma (left coiling) reveal three major cooling events synchronous with North Atlantic Henrich events 1 and 2 (H1 and H2) and the European and North Atlantic Younger Dryas event. During the Holocene, the presence of warm dinocyst species (Spiniferites mirabilis and Impagidinium aculeatum) and planktonic foraminifera (Globorotalia inflata and Globigerinoides ruber), reflects a significant increase of sea surface temperatures in the western Mediterranean basin, but a full warming was not recorded until 1500 years after the onset of the Holocene. Moreover, our results show that the Holocene was interrupted by at least four brief cooling events at ~ 9.2 ka, ~ 8 ka, ~ 7 ka and ~ 2.2 ka cal. BP, which may be correlated to climatic events recorded in Greenland ice cores and in the Atlantic Ocean.  相似文献   

4.
Ecological indicators have gained increasing attention within the scientific community over the past 40 years. Several taxonomic groups have been used successfully as indicators including most prominently fish, invertebrates, plants, and birds because of their ability to indicate environmental changes. In the Laurentian Great Lakes region, there has been recent concern over the applicability of using indicators on a basin-wide scale due to species range restrictions and lake-based differences. The objective of this study was to determine the ability of the Index of Marsh Bird Community Integrity (IMBCI) to indicate land use disturbance surrounding coastal marshes of Georgian Bay and Lake Ontario. To meet this objective, we surveyed birds and vegetation at 14 marshes in Georgian Bay (low land use disturbance) and Lake Ontario (high land use disturbance). Even though Lake Ontario marshes were surrounded by significantly more altered land than Georgian Bay marshes, and had poorer water quality, we found significantly fewer birds in Georgian Bay marshes (mean = 8.2) compared to Lake Ontario (mean = 13.7) and no significant difference in IMBCI scores. This inconsistency could be due to vegetation differences affecting the strength of the index, because Georgian Bay wetlands had significantly more bulrush (Schoenoplectus spp.) and floating vegetation, while Lake Ontario wetland vegetation was taller and cattail-dominated (Typha spp.). These findings suggest that the IMBCI may not be useful on a basin-wide scale in the Great Lakes region in detecting human disturbance surrounding wetlands.  相似文献   

5.
Evaluating the response of vegetation to climate change is relevant to improving the management of both human and natural systems. Here, we quantify the response of the MODIS-based enhanced vegetation index (EVI) to temperature, precipitation, and large-scale natural variability across the South-Central U.S. for summer (JJA) from 2000 to 2013. We find statistically significant relationships between climate and EVI that vary across the region and are distinct for each land cover type: the mean coefficient of determination (R2) between EVI and climate is greatest for pasture (0.61 ± 0.13) and lowest for forest (0.55 ± 0.14). Among the climate variables, three-month cumulative precipitation has the strongest influence on summer vegetation, particularly in semi-arid west Texas and eastern New Mexico. Summer monthly maximum temperature plays an important role in the eastern half of Texas and Oklahoma, moderated by the influence of both Atlantic and Pacific teleconnection indices over inter-annual time scales. Based on these relationships, we train, cross-validate, and, where statistically significant relationships exist, combine this multivariate predictive model with projected changes in teleconnection indices and statistically-downscaled temperature and precipitation from 16 CMIP5 global climate models to quantify future changes in EVI. As global mean temperature increases, projected EVI decreases, indicative of stressed and dry vegetation, particularly for grasslands as compared to other land types, and in Oklahoma and western, central and Gulf Coast Texas for mid- and end-of-century. These trends have potentially important implications for agriculture and the regional economy, as well as for ecosystems and endemic species that depend on vegetation.  相似文献   

6.
The PP10 stalagmite from Poleva Cave provides a Late Pleistocene and Holocene isotopic record characteristic for the SW of Romania, a sub-Mediterranean climatic region. The speleothem was dated by eight TIMS and one alpha U-series dates which showed that it was precipitated between ∼ 75 ka and ∼ 2 ka with at least two hiatuses. The basal sector of the stalagmite showed a slow-growing regime of ∼ 0.26 cm/ka, while the upper one grew relatively fast with about 5 cm/ka. The temporal resolution for the isotopic sampling is thus ∼ 2 ka/sample for the lower sector, and ∼ 150 years/sample for the upper one. The relationship between δ18O and temperature was found positive. The isotopic record of the lower sector shows two marked cold intervals during ∼ 67 and 58 ka and ∼ 40–35 ka, respectively, which correlate well with the Villars and Soreq records. The upper sector record is so far the most detailed Holocene isotopic record in Romania and the only one available for the regions located at the exterior of the Carpathians Range. The signal shows a gradual warming after the GS1 event punctuated by several cold events at ∼ 8, 7.2 and 4.2 ka and also by warm oscillations centered at about 5.2 and 3.3 ka. The results seem to indicate that if the North-Atlantic first-order signals may extend well to the south-eastern Europe, their amplitude and general trend may be diminished by the interferences with the Mediterranean circulation.  相似文献   

7.
Well-preserved Ginkgo leaves with cuticle were collected from the Middle Jurassic Jiulongshan Formation in the Daohugou area, Inner Mongolia, China, which form the common elements in the Daohugou flora. Three new species of Ginkgo are recognized and their leaf morphology and cuticular structure are described for the first time. Two different pCO2 proxy models were applied to reconstruct palaeo-atmospheric CO2 concentration by using these new Ginkgo material. NLE (nearest living equivalent) suggests a semi-quantitative pCO2 estimate as 839 ± 99 ppmv with Carboniferous standardization and 419 ± 49 ppmv with Recent standardization. While Barclay’s revised SI-pCO2 regression suggests the estimates as 405 ± 71 ppmv. The results show that the pCO2 estimate is higher than today’s atmospheric CO2 concentration but lower than most of the other results on the Jurassic Period. Combined with the floristic composition, the climate at 165 Ma in the Daohugou area is inferred to be warm temperate.  相似文献   

8.
Studies on ecosystem service function have an important significance for analyzing and understanding global warming. With the introduction of geographic information system (GIS) and remote sensing (RS) technologies for the evaluation of ecosystem service function, the scope for analysis has been widening. Increasing number of researchers use these technologies to quantify the value of ecosystem service functions and reveal their spatial-temporal variability. By using the data for the interpretation of five RS images and net primary productivity (NPP) in Qinghai Lake basin, we assessed the value of vegetation carbon fixation and oxygen release services and revealed their dynamic variation in this basin. The result suggested that the average values of vegetation carbon fixation and oxygen release services in Qinghai Lake basin between 1987 and 2010 were spatially distributed in a ring shape around the Qinghai Lake and decreased from southeastern to the north and northwestern regions; the northwestern areas had the lowest value. The vegetation carbon fixation value between 1987 and 2010 was on an average 28.87 × 108 yuan/a in Qinghai Lake basin, whereas the oxygen release value was 64.41 × 108 yuan/a. Alpine meadow ecosystem showed the highest value of vegetation carbon fixation and oxygen release services function in Qinghai Lake basin, with average values of 18.28 × 108 yuan/a and 40.79 × 108 yuan/a, respectively, followed by those of temperate steppe and sparse vegetation. The vegetation carbon fixation and oxygen release values in Qinghai Lake basin gradually increased from 1987 to 2010, with the maximum value in 2010. By the end of 2010, the values increased by 7.19 × 108 yuan and 16.04 × 108 yuan, respectively. The values slightly decreased in barren land, lakeside marsh, river valley swamp, and sandy areas, but increased to different degrees in other ecosystems. Among them, the largest increase was noted in alpine meadow (4.38 × 108 yuan and 9.78 × 108 yuan, respectively), followed by those in temperate steppe with increased values of 1.12 × 108 yuan and 2.49 × 108 yuan, respectively.  相似文献   

9.
Aiming at future comparisons with earlier hunter-gatherers or transitional populations, this paper intends to characterize and describe the oral pathology pattern of late agriculturalists from Central Andes dating to the Late Intermediate Period (LIP) and Inca periods (1000–1532 CE), and identify differences and/or similarities between coastal and highland populations. Although the botanical inventories of the LIP suggest carbohydrate-rich diets and similar components, it has been hypothesized that coastal and highland populations had, nevertheless, substantially different oral pathology patterns. We evaluated 14 indicators of oral pathology from Los Pinos (n = 200) and Armatambo (n = 25) sites in the Central Coast and two chronological phases from Laguna de los Cóndores site (LC-Inca, n = 23; and LC-LIP, n = 55), in the Peruvian northern highlands. The results showed a recurrent pattern of oral pathologies characterized by cervical caries (above 30%), extra-occlusal caries (above 60%), high rates of gross-gross caries, high frequency of ante mortem tooth loss, and signals of periodontal disease among these four populations. The diets of the coast were slightly more abrasive than those of the highlands. Oral pathology patterns were compatible with a slightly more cariogenic diet in the coast than in the highlands. In all four populations, those patterns were modulated by other common factors such as consumption of fermented drinks (maize beer – chicha) and the coca leaf chewing habit.  相似文献   

10.
Western Hubei is the most concentrated area of forest resources in Hubei Province, and the knowledge of the distribution characteristics of ecosystem carbon density is important to understand the regional characteristics of carbon density and its mechanism of formation. Carbon density and factors influencing different layers in the ecosystem were studied by using field data. The average carbon density of ecosystems in western Hubei was 159.05 t/hm2; the carbon density of different forest types in descending order was Abies fargesii forests (362.25 t/hm2), mixed broadleaf-conifer forests (154.13 t/hm2), broad-leaved forests (146.09 t/hm2), and coniferous forests (135.76 t/hm2), and ecosystem carbon density increased with increasing age. The carbon density of the arborous layer, shrub layer, and soil layer of A. fargesii forests was significant higher than that of the other forests (P < 0.05), indicating the carbon storage per unit area of A. fargesii forests, which grow at higher elevations, was the greatest. The carbon density in arborous layers of broad-leaved forests, mixed broadleaf-conifer forests, and coniferous forests was 39.29 t/hm2, 48.99 t/hm2, and 48.39 t/hm2, respectively. Those of the soil layer were 102.96 t/hm2, 100.97 t/hm2, and 82.37 t/hm2, respectively, and there were no significant differences among them. Among the three forest types, carbon density in the litter layer was greater than that of the shrub layer, which indicated the litter layer plays an important role in carbon storage. The carbon density of mixed broadleaf-conifer forests was greatest, excluding A. fargesii forests, in medium (58.71 t/hm2) and mature forests (79.66 t/hm2). Thus, the carbon sink of mixed broadleaf-conifer forests had more potential than the others at the medium and mature forest stage. The soil layer carbon density in different forests constituted 60.67—70.48% of the entire ecosystem, and was 1.70—2.62 times greater than that of the arborous layer. There are many factors influencing ecosystem carbon density, which result from the interaction of environmental and topographical factors. The main explanatory variables of carbon density of the region were altitude, precipitation, and canopy density. The vegetation and soil layer carbon density increased as altitude increased, and the rate of change for every vertical 100 m was 1.3 t/hm2 and 1.9 t/hm2, respectively (P < 0.05). Although the annual average precipitation only affected the carbon density of the vegetation, it increased to 4 t/hm2 (P < 0.01) when average precipitation was >100 mm.  相似文献   

11.
The 2011 Great East Japan Earthquake and the subsequent huge tsunami greatly affected both human activity and the coastal marine ecosystem along the Pacific coast of Japan. The tsunami also reached Funka Bay in northern Japan and caused serious damage to the scallop cultures there, and this tsunami was believed to have affected the coastal environments in the bay. Therefore, we investigated the changes in the spatial abundance and distribution of the toxic dinoflagellates Alexandrium tamarense cysts before the tsunami (August 2010) and after the tsunami (May 2011, August 2011, May 2012 and August 2012) in the bay. Further, monthly sampling was conducted after the tsunami to identify seasonal changes of Alexandrium catenella/tamarense cysts and vegetative cells. Significant increases were observed in the populations of A. catenella/tamarense cysts, comparing the abundances before the tsunami (in August 2010; 70 ± 61 cysts g−1 wet sediment) to those just after it (in May 2011; 108 ± 84 cysts g−1 wet sediment), and both A. tamarense bloom (a maximum density was 1.3 × 103 cells L−1) and PSP (Paralytic Shellfish Poisoning) toxin contamination of scallops (9.4 mouse unit g−1 was recorded) occurred in the bay. Seasonal sampling also revealed that the encystment of A. tamarense and the supply of the cysts to bottom sediments did not occur in the bay from September to April. These results strongly suggested that the mixing of the bottom sediments by the tsunami caused the accumulation of the toxic A. tamarense cysts in the surface of bottom sediment through the process of redeposition in Funka Bay. Moreover, this cyst deposition may have contributed to the toxic bloom formation as a seed population in the spring of 2011.  相似文献   

12.
The dissolved oxygen (DO) content of the ocean provides potential evidence and clues for the waxing and waning of marine productivity, ocean circulation, global climate change, and the evolution of ecological communities. On the basis of the analysis of the Benthic Foraminiferal Oxygen Index (BFOI), the percentage of epifaunal benthic foraminifers, and the redox-sensitive trace elements (Mo/Al) in Core MD12-3432, we reconstruct the evolution of deep water DO content in the northern South China Sea (SCS) during the past 400 ka and discuss the mechanisms of variable DO content. The results show that the changes of BFOI, Mo/Al, and the percentage of epifaunal benthic foraminifer present a similar pattern, which may reflect the variations of the DO content in seawater since 400 ka. Both variations in BFOI and Mo/Al indicate that the DO content was high during most time of marine isotope stage (MIS) 11 to mid-MIS 6, then decreased in late-MIS 6, and remained stable in MIS 5. It increased in MIS 4 and decreased until MIS 2, and then rose again. The non-synchronous variations between bottom water DO and benthic foraminiferal δ18O indicate that the DO content is not controlled by glacial-interglacial cyclic environmental variations. Comparing the biomarker productivity index with the DO content of water, we find that the DO content is affected mainly by productivity. Bulimina, Uvigerina and Chilostomella oolina are high productivity species. The accumulation rates of Bulimina and Uvigerina are higher during 61–15 kyr interval, but the accumulation rate of C. oolina is higher during 168–130 kyr. The results infer that different intensity of primary productivity and DO during these two periods. The DO and phytoplankton total (PT) show the opposite relation, which also indicates that the DO is affected by primary productivity, and the combined action of productivity and DO decides the growth of Bulimina, Uvigerina, and C. oolina. Besides the influences of productivity, the change of DO in the ocean is also affected by oceanic circulation.  相似文献   

13.
The Hout-Kasef is traditional salted fermented fish product of natural fermentation of salted mullet fish of coastal area of Jazan region of Saudi Arabia. The present study was carried out to investigate the microbiological and chemical characteristic of Hout-Kasef. A total of twenty-four salted fish samples were purchased from fish market in Jazan and Abu-Arish at different times of the year. The microbial studies of salted-fermented fish revealed a total bacterial count ranging from 2.81 to 4.72 Log10 CFU/g, yeast and mold counts ranging from 0.48 to 3.14 Log10 CFU/g, total staphylococci count 2.71–3.85 Log10 CFU/g, halophile bacteria count 3.26–5.14 Log10 CFU/g, and coliforms count <1 Log10 CFU/g. However, pathogenic bacteria such as Listeria monocytogenes, Vibrio spp., Campylobacter spp. and Yersinia species were not detected. The major bacteria species isolated and identified from the salted fermented fish were Bacillus Subtilus, Bacillus mycoides, Bacillus licheniformis, Bacillus pumilus, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus hominis, Staphylococcus xylosus, Staphylococcus saprophticus and Staphylococcus cahnii subsp cahnii. The chemical analysis of salted fermented fish showed high content of moisture (47.96%), protein (25.71%), ash (19.6%) and salt (15.19%) but low contents of lipid (7.25%). The salted-fermented fish also showed high level of total volatile basic nitrogen (78.86 mg/100 gm sample) and thiobarbutric acid number (32.32 mg malonaldehyde/kg) with a pH value of pH 6.3. Finally, this study showed the presence of gram positive and gram negative bacteria in the fish product. The predominant microorganisms found were Bacillus and Staphylococcus spp. The fish product had high content of salt and TVB-N levels.  相似文献   

14.
Recent global warming is pronounced in high-latitude regions (e.g. northern Asia), and will cause the vegetation to change. Future vegetation trends (e.g. the “arctic greening”) will feed back into atmospheric circulation and the global climate system. Understanding the nature and causes of past vegetation changes is important for predicting the composition and distribution of future vegetation communities. Fossil pollen records from 468 sites in northern and eastern Asia were biomised at selected times between 40 cal ka bp and today. Biomes were also simulated using a climate-driven biome model and results from the two approaches compared in order to help understand the mechanisms behind the observed vegetation changes. The consistent biome results inferred by both approaches reveal that long-term and broad-scale vegetation patterns reflect global- to hemispheric-scale climate changes. Forest biomes increase around the beginning of the late deglaciation, become more widespread during the early and middle Holocene, and decrease in the late Holocene in fringe areas of the Asian Summer Monsoon. At the southern and southwestern margins of the taiga, forest increases in the early Holocene and shows notable species succession, which may have been caused by winter warming at ca. 7 cal ka bp. At the northeastern taiga margin (central Yakutia and northeastern Siberia), shrub expansion during the last deglaciation appears to prevent the permafrost from thawing and hinders the northward expansion of evergreen needle-leaved species until ca. 7 cal ka bp. The vegetation-climate disequilibrium during the early Holocene in the taiga-tundra transition zone suggests that projected climate warming will not cause a northward expansion of evergreen needle-leaved species.  相似文献   

15.
The suggested location of broadleaved evergreen trees in Europe during the last full-glacial has traditionally favoured a southerly refugial model, which proposes survival in the Mediterranean peninsulas and recolonization of central and northern Europe during the Holocene. This hypothesis is not always substantiated by thorough reviews of original past and modern occurrence data, or considered in the light of plant traits and autoecology. Our approach focuses on the genus Buxus with the aim of exploring (i) the relationship between the location of refugia and post-glacial population dynamics, (ii) past processes determining density, fragmentation and local extinctions of modern populations, and (iii) the vulnerability of Buxus in the context of the undergoing environmental changes. We compiled a database of over 3600 modern occurrences and 676 fossil sites to reconstruct the distribution of Buxus in Europe since 30 ka cal BP. The location of fossil finds and the plant traits of Buxus indicate that it persisted widely across its modern distribution through the last glacial period with modes varying from region to region. The E Pyrenees, W Alps, and Jura Mts hosted dense populations, which expanded exponentially during the whole Holocene, and resulted in a modern continuous distribution area. In contrast, the Mediterranean Peninsulas hosted sparse populations, which increased exponentially only during the first half of the Holocene, clearly decreased in the last 4.5 ka BP and resulted in a highly fragmented modern distribution area, most likely in relation to the climate trends towards dry conditions of the last few millennia. These results challenge the common view that the Mediterranean regions are the exclusive and most important refuge areas for evergreen broadleaved trees and stress the importance of considering long-term population dynamics based on fossil data to evaluate the vulnerability of modern fragmented plant populations in view of conservation actions.  相似文献   

16.
Halophilic microbes are studied to understand the metabolic pathways adopted by organisms in such extreme environment and for their biotechnological exploitation. In thallosohaline environments worldwide, the autotrophic alga Dunaliella salina Teodoresco is omnipresent, but it is being recently realised that the heterotrophic components vary in different regions. The unexplored eastern coastline of India abutted by Bay of Bengal was investigated for the heterotrophic halophilic microbes in this region. The waters in the salterns – replicas of natural hyper-saline water bodies of that region, were collected at four sites along 650 km of the coastal belt. In cultures set up from these waters, green and pink colonies were observed. The green colonies were found to be those of D. salina while the pink colonies were of heterotrophs. To identify the heterotrophic microbes, light microscopy, 16S rRNA typing and pigment profiling through spectrophotometry and HPLC were done. The cells in pink colonies were rod shaped. 16S rRNA typing of cells in these colonies detected the presence of Halomonas sp. – a eubacterium. The pigment profile of cells in pink cultures matched that of the archaea – Halobacterium; bacterioruberin derivatives were found. Thus, it was concluded that Halomonas and Halobacterium spp. are among the co-inhabitant heterotrophs of D. salina. Cultures of D. salina established from these salterns showed the typical three colours seen in the ponds of different sub-plots of salterns. They were green until 30 days, turning dark orange by 60 days and pink when 90 day old. In the 90 day old cultures, innumerable rod shaped cells were found. These cells were similar to the cells of the waters from the ponds of pink sub-plots of salterns and the pink colonies established from saltern waters in the laboratory. In the old (90 days) laboratory cultures of D. salina, the glycerol and proteins released from degenerating cells and the increase in salt concentration to super saturation levels due to evaporation of water in the medium led to the gregarious appearance of the heterotrophs – the co-inhabitants in natural environment.  相似文献   

17.
Saudi Arabia rangeland ecosystems have undergone intense processes of degradation for many decades because of extreme climate and human activities such as overgrazing and socioeconomic changes. In this study, Hail and Qassim Regions of Saudi Arabia covering an area about 79610.73 km2 were selected to study the rangeland vegetation and condition. Haloxylon salicornicum was the most dominant species, covering more than 56% of the total area. The second prominent community was Acacia-Lycium shawii, which covers about 21% of total area. It was found that about 65% of vegetation in the surveyed area is in good or very good condition compared with about 31% in poor or deteriorated condition. Effective measures such as determination of carrying capacities and development of grazing systems have to be implemented to ensure resources sustainably.  相似文献   

18.
The aim of this study was to analyze the effectiveness of different control agents of Aedes aegypti and Aedes albopictus associated with ovitraps under laboratory and field conditions. Five treatments were used: grass infusion + Bacillus thuringiensis israelensis (gI + Bti), grass infusion + Saccharopolyspora spinosa (gI + Ss), grass infusion + Pyriproxyfen (gI + P), distilled water + Toxorhynchites haemorrhoidalis (dW + Th), and grass infusion (gI) (control). The highest mean number of eggs of both species were obtained with grass infusion in the laboratory. Among control agents, the lowest mean of A. aegypti eggs occurred with gI + Ss and the lowest mean of A. albopictus eggs occurred with dW + Th. There was no difference between treatments in A. aegypti (P = 0.4320) and A. albopictus (P = 0.7179). In the field, the highest mean number of eggs for both species were obtained with gI + Ss, and the lowest values were obtained with gI + P (P = 0.0124). The treatments can be applied to both the surveillance and the control, but ovitraps with biological larvicide Bti were more effective and safer considering the number of eggs laid and selectivity of pathogens for mosquitoes.  相似文献   

19.
The inter-annual shift of spring vegetation phenology relative to per unit change of preseason temperature, referred to as temperature sensitivity (days °C−1), quantifies the response of spring phenology to temperature change. Temperature sensitivity was found to differ greatly among vegetation from different environmental conditions. Understanding the large-scale spatial pattern of temperature sensitivity and its underlying determinant will greatly improve our ability to predict spring phenology. In this study, we investigated the temperature sensitivity for natural ecosystems over the North Hemisphere (north of 30°N), based on the vegetation phenological date estimated from NDVI time-series data provided by the Advanced Very High Resolution Radiometer (AVHRR) and the corresponding climate dataset. We found a notable longitudinal change pattern with considerable increases of temperature sensitivity from inlands to most coastal areas and a less obvious latitudinal pattern with larger sensitivity in low latitude area. This general spatial variation in temperature sensitivity is most strongly associated with the within-spring warming speed (WWS; r = 0.35, p < 0.01), a variable describing the increase speed of daily mean temperature during spring within a year, compared with other factors including the mean spring temperature, spring precipitation and mean winter temperature. These findings suggest that the same magnitude of warming will less affect spring vegetation phenology in regions with higher WWS, which might partially reflect plants’ adaption to local climate that prevents plants from frost risk caused by the advance of spring phenology. WWS accounts for the spatial variation in temperature sensitivity and should be taken into account in forecasting spring phenology and in assessing carbon cycle under the projected climate warming.  相似文献   

20.
Following up the SAR study of triazolothiadiazoles for their antitubercular activities targeting Mt SD in our previous study, on the principle of scaffold hopping, the C3 and C6 positions of triazolothiadiazine were examined systematically to define a preliminary structure–activity relationship (SAR) with respect to biological activity. This study herein highlights the potential of two highly potent advanced leads 6c-3, 6g-3 and several other compounds with comparable potencies as promising new candidates for the treatment of TB (6c-3, MIC-H37Rv = 0.25 μg/mL; MIC-MDRTB = 2.0 μg/mL; MIC-RDRTB = 0.25 μg/mL; Mt SD-IC50 = 86.39 μg/mL; and 6g-3, MIC-H37Rv = 1.0 μg/mL; MIC-MDRTB = 4.0 μg/mL; MIC-RDRTB = 2.0 μg/mL; Mt SD-IC50 = 73.57 μg/mL). Compounds 6c-3 and 6g-3 possessed a para-nitro phenyl at the 6 position showed low Vero and HepG2 cells toxicity, turning out to be two excellent lead candidates for preclinical trials. In addition, in vitro Mt SD inhibitory assay indicates that Mt SD is at least one of the targets for their antitubercular activity. Thus, they may turn out to be promising multidrug-resistance-reversing agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号