首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of host specificity, its phylogenetic conservativeness and origin are virtually unknown in Eimeria. This situation is largely due to the inadequate sample of eimerian molecular data available for reliable phylogenetic analyses. In this study, we extend the data set by adding 71 new sequences of coccidia infecting 16 small-mammal genera, mostly rodents. According to the respective feasibility of PCR gene amplification, the new samples are represented by one or more of the following genes: nuclear 18S rRNA, plastid ORF 470, and mitochondrial COI. Phylogenetic analyses of these sequences confirm the previous hypothesis that Eimeria, in its current morphology-based delimitation, is not a monophyletic group. Several samples of coccidia corresponding morphologically to other genera are scattered among the Eimeria lineages. More importantly, the distribution of eimerians from different hosts indicates that the clustering of eimerian species is influenced by their host specificity, but does not arise from a cophylogenetic/cospeciation process; while several clusters are specific to a particular host group, inner topologies within these clusters do not reflect host phylogeny. This observation suggests that the host specificity of Eimeria is caused by adaptive rather than cophylogenetic processes.  相似文献   

2.
Partial (~ 780 bp) mitochondrial cytochrome c oxidase subunit I (COI) and near complete nuclear 18S rDNA (~ 1,780 bp) sequences were directly compared to assess their relative usefulness as markers for species identification and phylogenetic analysis of coccidian parasites (phylum Apicomplexa). Fifteen new COI partial sequences were obtained using two pairs of new primers from rigorously characterised (sensu Reid and Long, 1979) laboratory strains of seven Eimeria spp. infecting chickens as well as three additional sequences from cloned laboratory strains of Toxoplasma gondii (ME49 and GT1) and Neospora caninum (NC1) that were used as outgroup taxa for phylogenetic analyses. Phylogenetic analyses based on COI sequences yielded robust support for the monophyly of individual Eimeria spp. infecting poultry except for the Eimeria mitis/mivati clade; however, the lack of a phenotypically characterised strain of E. mivati precludes drawing any firm conclusions regarding this observation. Unlike in the 18S rDNA-based phylogenetic reconstructions, Eimerianecatrix and Eimeria tenella formed monophyletic clades based on partial COI sequences. A species delimitation test was performed to determine the probability of making a correct identification of an unknown specimen (sequence) based on either complete 18S rDNA or partial COI sequences; in almost all cases, the partial COI sequences were more reliable as species-specific markers than complete 18S rDNA sequences. These observations demonstrate that partial COI sequences provide more synapomorphic characters at the species level than complete 18S rDNA sequences from the same taxa. We conclude that COI performs well as a marker for the identification of coccidian taxa (Eimeriorina) and will make an excellent DNA 'barcode' target for coccidia. The COI locus, in combination with an 18S rDNA sequence as an 'anchor', has sufficient phylogenetic signal to assist in the resolution of apparent paraphylies within the coccidia and likely more broadly within the Apicomplexa.  相似文献   

3.
Investigating the evolutionary relationships of the major groups of Apicomplexa remains an important area of study. Morphological features and host-parasite relationships continue to be important in the systematics of the adeleorinid coccidia (suborder Adeleorina), but the systematics of these parasites have not been well-supported or have been constrained by data that were lacking or difficult to interpret. Previous phylogenetic studies of the Adeleorina have been based on morphological and developmental characters of several well-described species or based on nuclear 18S ribosomal DNA (rDNA) sequences from taxa of limited taxonomic diversity. Twelve new 18S rDNA sequences from adeleorinid coccidia were combined with published sequences to study the molecular phylogeny of taxa within the Adeleorina and to investigate the evolutionary relationships of adeleorinid parasites within the Apicomplexa. Three phylogenetic methods supported strongly that the suborder Adeleorina formed a monophyletic clade within the Apicomplexa. Most widely recognized families within the Adeleorina were hypothesized to be monophyletic in all analyses, although the single Hemolivia species included in the analyses was the sister taxon to a Hepatozoon sp. within a larger clade that contained all other Hepatozoon spp. making the family Hepatozoidae paraphyletic. There was an apparent relationship between the various clades generated by the analyses and the definitive (invertebrate) host parasitized and, to lesser extent, the type of intermediate (vertebrate) host exploited by the adeleorinid parasites. We conclude that additional taxon sampling and use of other genetic markers apart from 18S rDNA will be required to better resolve relationships among these parasites.  相似文献   

4.
Previously, we characterized an undocumented strain of Eimeria krijgsmanni by morphological and biological features. Here, we present a detailed molecular phylogenetic analysis of this organism. Namely, 18S ribosomal RNA gene (rDNA) sequences of E. krijgsmanni were analyzed to incorporate this species into a comprehensive Eimeria phylogeny. As a result, partial 18S rDNA sequence from E. krijgsmanni was successfully determined, and two different types, Type A and Type B, that differed by 1 base pair were identified. E. krijgsmanni was originally isolated from a single oocyst, and thus the result show that the two types might have allelic sequence heterogeneity in the 18S rDNA. Based on phylogenetic analyses, the two types of E. krijgsmanni 18S rDNA formed one of two clades among murine Eimeria spp.; these Eimeria clades reflected morphological similarity among the Eimeria spp. This is the third molecular phylogenetic characterization of a murine Eimeria spp. in addition to E. falciformis and E. papillata.  相似文献   

5.
The Javan ferret-badger Melogale orientalis (Carnivora: Mustelidae: Helictidinae) is a small carnivore endemic to Indonesia. In the family Mustelidae, 10 Eimeria, 12 Cystoisopora, one Isospora, and one Hammondia species are known, but no eimeriid coccidia has been yet described in the subfamily Helictinidae (ferret badgers). Coproscopic examination of Javan ferret-badgers imported into the Czech Republic revealed the presence of coccidian oocysts. Sporulated oocysts differ from other Eimeria known in the family Mustelidae by their small size (12.4–16.1 × 10.4–13.4 μm) and ovoidal shape. Morphological data and phylogenetic analyses of 18S rRNA and COI genes indicated a new species of Eimeria found in faecal samples of Javan ferret badgers. The species is described as E. melogale n. sp.  相似文献   

6.
Branchiobdellidans, or crayfish worms, are ectosymbiotic clitellate annelids associated primarily with freshwater crayfishes. The main objectives of our study were to infer a molecular phylogeny for the North American Branchiobdellida, examine its congruence with morphology-based hypotheses of relationships at the subfamily and genus level, and use our dataset to assess consistency of GenBank-archived branchiobdellidan sequences. We used nucleotide sequence data from two mtDNA genes (COI and 16S rDNA) and three nuclear genes (28S rDNA, 18S rDNA, and ITS1) to estimate phylogenetic relationships among 47 described and one undescribed species of Branchiobdellida. We recovered a monophyletic branchiobdellidan clade with generally short branch lengths, suggesting that a large portion of the taxon has likely undergone a recent and rapid radiation in North America. Results from our phylogenetic analyses indicate that current taxonomic groupings are largely unsupported by the molecular data. All four subfamilies are either paraphyletic or polyphyletic, and only three of seven sampled non-monotypic genera were monophyletic. We found a high rate (49%) of inconsistency in GenBank-archived sequences, over 70% of which can be attributed to field- or laboratory-based error.  相似文献   

7.
Beĭer TV 《Parazitologiia》2000,34(3):183-195
The coccidian nature of the genus Cryptosporidium was undoubtedly accepted by Tyzzer who was the first to describe this sporozoan parasite in 1907. Electron microscopic studies made in 70-90s demonstrated the intracellular, although extracytoplasmic localization of Cryptosporidium spp. The pattern of Cryptosporidium life cycle fits well that of other intestinal homogeneous coccidian genera of the suborder Eimeriina: macro- and microgamonts develop independently, a microgamont gives rise to numerous male gametes, oocysts serving for parasite's spreading in the environment. Along with these characters, Cryptosporidium spp. demonstrate some secondary peculiarities (an endogenous phase of development in microvilli of epithelial surfaces, two morphofunctional types of oocysts, the smallest number of sporozoites per oocyst, a multi-membraneous "feeder" organelle etc.), which may be due presumably to their early acquisition of specialization in the course of evolution. The recent studies based on molecular sequence data (18S rRNA) applied to 8 eimeriid and isosporid coccidian genera (Morrison, Ellis, 1997), suggested that the subclass Coccidia (class, according to Morrison and Ellis) be considered monophylic if Cryptosporidium were excluded, and this genus was regarded as the sister group to the rest of the Apicomplexa, or as the sister to the suborder (class) Hematozoa within the Apicomplexa. Either of these placements of Cryptosporidium definitely conflicts with both the generally accepted taxonomic scheme by Levine (1982) and the phenotypically based phylogeny of the phylum Apicomplexa (Barta e. a., 1990). The author's opinion is that the differences between the examined eimeriid and isosporid coccidia, on the one hand, and Cryptosporidium, on the other hand, provided by molecular sequence data, may testify primarily to the well known morphofunctional dissimilarities between the compared organisms, rather than cast doubt on the coccidian nature of Cryptosporidium. Again, these data can hardly prove that Cryptosporidium does not belong to the coccidia. Thus, the modern molecular sequence data, despite their obvious scientific value, would make sense for phylogeny estimation only, if they are critically analysed and considered in combination with results of the relevant basic research.  相似文献   

8.
In the New World, the avian order Passeriformes comprises 47 families and 2,453 species, yet to date only 21 (45%) of the families and 58 (2%) of the species have been examined for coccidia, and from these only two species of Eimeria Schneider, 1875 and 81 species of Isospora Schneider, 1881 have been described. This review contributes to our understanding of the morphology and systematics of coccidian parasites of passeriforms, providing a scientific basis for the identification of sporulated oöcysts recovered from the faeces of passerine birds from North, Central and South America. To this end, the coccidia were organised and grouped according to the family of the host, following the widely recognised concept of family-specificity and the updated systematics of the class Aves. Details of 83 eimeriid species are presented along with an illustration and tabulated data.  相似文献   

9.
10.
Prevalence and disease caused by isosporoid coccidia in passerine birds are well recognized, but confusion about the life cycles of the parasites has led to taxonomic inconsistencies. In this study, we characterized segments of the chromosomal small and large-subunit ribosomal RNA (rRNA) genes of coccidial parasites from 23 species of passerine birds, as well as heat shock protein 70, apicoplast rRNA, and chromosomal 5.8s rRNA genes from a subgroup of these animals, and we correlated genetic data with morphologic findings for different parasite developmental stages, host phylogeny, and overall taxonomic relations within the phylum Apicomplexa. Our findings indicate that isosporoid coccidia of passerine birds are monophyletic but exhibit substantial diversity, with most avian species having one or several unique parasite lineages that underwent synchronous speciation with their hosts, interrupted by sporadic episodes of lateral transmission across species and families. Molecular analyses support a homoxenous life cycle, with sexual forms occurring chiefly in the intestines and asexual merozoites present systemically. Rarely, extraintestinal sexual stages can occur. The passerine coccidia are genetically most closely related to species of Eimeria rather than Isospora. We suggest that these parasites, whether identified from blood merozoite stages or fecal oocysts, be provisionally grouped as a homogeneous clade of individual species in a single taxon and formally named when reliable criteria allowing reclassification of related genera in the suborder Eimeriina are clarified.  相似文献   

11.
Abstract:The Coccotremataceae is a small family including two genera:Coccotrema with a crustose, granulate to verrucose thallus and Lepolichen with terete lobes and rhizines. The generic concept based on this morphological difference was re-evaluated using three molecular markers, mt SSU rDNA, nu LSU rDNA, and the nu ITS region. The analysis of the ITS region does not provide sufficient resolution within the Coccotremataceae, while the other two data sets contradict the current generic concept. The mt SSU and nu LSU data sets and the combined analysis of the two data sets all place Lepolichen within Coccotrema. However, an alternative topology with monophyleticCoccotrema cannot be rejected when the ITS data set is included in the combined analyses. This shortcoming of the ITS data set can be overcome by the combined analysis of all three data sets, where monophyletic Coccotrema can be rejected using parametric bootstrapping, as in the mt SSU and nu LSU data sets (and combination thereof). It is proposed to reduceLepolichen into synonymy with Coccotrema. The correct name for the only species previously placed inLepolichen is Coccotrema coccophorum (Mont.) I. Schmitt, Messuti & Lumbsch.  相似文献   

12.
Thum  Ryan A. 《Hydrobiologia》2004,519(1-3):135-141
The phylogenetic relationships among the numerous genera of diaptomid copepods remain elusive due to difficulties in obtaining sufficient numbers of phylogenetically informative morphological characters for cladistic analysis. Molecular phylogenetic techniques offer high potential to resolve phylogenetic relationships in the absence of sufficient morphological characters because of the ease in which many characters can be unambiguously coded. I present the first molecular phylogeny for diaptomid copepod genera using 18S rDNA. Specifically, I test Light’s (1939) hypothesis regarding the interrelationships among the North American diaptomid genera. The 18S phylogeny is remarkably consistent with Light’s hypothesis. The endemic North American genera represent a monophyletic group exclusive of the non-endemic genera. Moreover, his hypothesized basal genus for the North America genera, Hesperodiaptomus, is the basal genus in this analysis. However, his Leptodiaptomus group is not reciprocally monophyletic with his Hesperodiaptomus group, but is rather a derived member of the latter group. Finally, the genus Mastigodiaptomus is found to be more closely allied with the non-endemic genera, as Light suggested. This phylogeny contributes heavily to the understanding of phylogenetic relationships among North American diaptomids and has large implications for the systematics of diaptomids in general. The use of 18S rDNA sequences in phylogenetic analyses of diaptomid copepods can be used to confirm the monophyly of recognized genera, the interrelationships among genera, and subsequent biogeographic interpretation of the family’s diversification. The use of molecular data, such as 18S rDNA sequences, to test phylogenetic hypotheses based on a very limited number of morphological characters will be a particularly useful approach to phylogenetic analysis in this system.  相似文献   

13.
Reptiles are the animals with the most described coccidian species among all vertebrates. However, the co‐evolutionary relationships in this host–parasite system have been scarcely studied. Paperna & Landsberg (South African Journal of Zoology, 24, 1989, 345) proposed the independent evolutionary origin of the Eimeria‐like species isolated from reptiles based on morphological and developmental characteristics of their oocysts. Accordingly, they suggested the reclassification of these parasites in two new genera, Choleoeimeria and Acroeimeria. The validity of the genera proposed to classify reptilian Eimeria species remained unresolved due to the lack of species genetically characterized. In this study, we included 18S rRNA gene sequences from seven Eimeria‐like species isolated from five different lizard host families. The phylogenetic analyses confirmed the independent evolutionary origin of the Eimeria‐like species infecting lizards. Within this group, most species were placed into two monophyletic clades. One of them included the species with ellipsoidal oocysts (i.e. Choleoeimeria‐like oocysts), whereas the species with more spheroidal oocysts (i.e. Acroeimeria‐like oocysts) were included in the second one. This result supports the taxonomic validity of the genera Acroeimeria and Choleoeimeria.  相似文献   

14.
Up to few years ago, the phylogenies of tardigrade taxa have been investigated using morphological data, but relationships within and between many taxa are still unresolved. Our aim has been to verify those relationships adding molecular analysis to morphological analysis, using nearly complete 18S ribosomal DNA gene sequences (five new) of 19 species, as well as cytochrome oxidase subunit 1 (COI) mitochondrial DNA gene sequences (15 new) from 20 species, from a total of seven families. The 18S rDNA tree was calculated by minimum evolution, maximum parsimony (MP) and maximum likelihood (ML) analyses. DNA sequences coding for COI were translated to amino acid sequences and a tree was also calculated by neighbour-joining, MP and ML analyses. For both trees (18S rDNA and COI) posterior probabilities were calculated by MrBayes. Prominent findings are as follows: the molecular data on Echiniscidae (Heterotardigrada) are in line with the phylogenetic relationships identifiable by morphological analysis. Among Eutardigrada, orders Apochela and Parachela are confirmed as sister groups. Ramazzottius (Hypsibiidae) results more related to Macrobiotidae than to the genera here considered of Hypsibiidae. Macrobiotidae and Macrobiotus result not monophyletic and confirm morphological data on the presence of at least two large groups within Macrobiotus. Using 18S rDNA and COI mtDNA genes, a new phylogenetic line has been identified within Macrobiotus , corresponding to the ' richtersi-areolatus group'. Moreover, cryptic species have been identified within the Macrobiotus ' richtersi group' and within Richtersius . Some evolutionary lines of tardigrades are confirmed, but others suggest taxonomic revision. In particular, the new genus Paramacrobiotus gen. n. has been identified, corresponding to the phylogenetic line represented by the ' richtersi-areolatus group'.  相似文献   

15.
The phylogeny of the Tubificidae, and of most of its subfamilies and some of its genera, is revisited, on the basis of sequences of 18S ribosomal DNA in a selection of species. Forty-six new 18S sequences of Naididae (6), Tubificidae (37), Phreodrilidae (1), Lumbriculidae (1), and Enchytraeidae (1) are reported and aligned together with corresponding sequences of 21 previously studied taxa. The 18S gene of Insulodrilus bifidus provides the first molecular evidence that phreodrilids are closely related to tubificids, corroborating previous conclusions based on morphology. The data further support the monophyletic status of Tubificidae, provided that the "Naididae" is regarded a part of this family; "naidids" may not even constitute a monophyletic group. It is thus suggested that the family name Naididae is formally suppressed as a junior synonym of the Tubificidae. The 18S gene also resolves a number of relationships within the tubificids. Among the subfamilies, Tubificinae is supported, Rhyacodrilinae and Phallodrilinae are revealed as nonmonophyletic, and Limnodriloidinae remains unresolved. Most tubificid genera tested for monophyly are corroborated by the data, only one (Tubifex) is refuted, and two (Tubificoides and Limnodriloides) are unresolved from other taxa. It is concluded that it will be valuable to expand the taxonomic sampling for 18S rDNA in clitellates, and in annelids in general, as this is likely to improve the resolution at many levels. However, it will be equally important to combine the annelid 18S data with other gene sequences and nonmolecular characters, to estimate the phylogeny of these common and diverse worms with greater precision.  相似文献   

16.
Nearly complete sequences were obtained from the 18S rDNA genes of Eimeria falciformis (the type species of the genus), Caryospora bigenetica, and Lankesterella minima. Two clones of the rDNA gene from C. higenetica varied slightly in primary structure. Parsimony-based and maximum likelihood phylogenetic reconstructions with a number of other apicomplexan taxa support 2 major clades within the Eucoccidiorida, i.e., the isosporoid coccidia (consisting of Toxoplasma, Neospora, Isospora [in part], and Sarcocystis spp.) and a second clade containing Lankesterella and Caryospora spp., as well as the eimeriid coccidia (Cyclospora, Isospora [in part], and Eimeria spp.). Our observations suggest that Caryospora spp. may not belong in the family Eimeriidae but rather may be allied with the family Lankesterellidae with which they share molecular and life history similarities. This may be a third lineage of coccidian parasites that has independently evolved a unique heteroxenous transmission strategy.  相似文献   

17.
At the joint meeting of the 8th International Coccidiosis Conference and the Annual Scientific Meeting of the Australian Society for Parasitology in Palm Cove, Australia, in July 2001, a Controversial Roundtable was held on 'New classification of coccidia'. The aim of this Roundtable was to stimulate and encourage discussion and debate on current classification schemes for the group of parasitic protozoa known as the eimeriid coccidia. In the past, such classifications have been based only on phenotypic characters such as morphology, ultrastructure, life cycles, and host specificity. However, over the past 10-15 years, molecular phylogenetic studies on taxa of the eimeriid coccidia have revealed that several of the families, subfamilies, and genera that have been erected based on non-molecular characters are paraphyletic. Therefore, this Roundtable was an important forum for initial discussions on how a new and more comprehensive classification of the eimeriid coccidia, which takes into consideration both phenotypic and molecular characters, can be devised. The stimulus came from invited speakers who gave introductions into selected areas of taxonomy and classification. Following these introductions, a more general discussion with the audience addressed potential steps that may be taken in future work. This review is the immediate outcome of the Roundtable. It describes advantages and disadvantages of the use of phenotypic or molecular characters as the base for taxonomic schemes for eimeriid coccidia. It gives specific examples for drawbacks of current classifications based only on phenotypic characters as well as potential pitfalls associated with the use of only molecular phylogenies. It addresses current controversies as well as rules of taxonomy and nomenclature relevant for the eimeriid coccidia. Finally, it recommends the establishment of an international group of scientists to meet on a regular basis, stimulate further discussions, and give direction on how the final goal, i.e. a proposal for a revised, and widely accepted, classification of the eimeriid coccidia, may be achieved.  相似文献   

18.
19.
Using partial DNA sequence data from nuclear 28S and 18S genes and mitochondrial 16S and COI genes, we reconstructed a phylogeny of the family Eurytomidae. Both maximum parsimony and Bayesian methods were employed. The analysis revealed a significant incongruence between the mitochondrial genes and the nuclear genes, and we chose the results from the nuclear genes as our preferred hypothesis. Our phylogeny suggested that the family Eurytomidae is not a monophyletic group; neither are the genera Eurytoma and Bruchophagus. The monophyly of genera Sycophila and Plutarchia was well supported, as was the close association of the genera Aiolomorphus, Tenuipetiolus, Bephratelloides, and Phylloxeroxenus. Our phylogeny also revealed an anticipated pattern, in which species groups from the genera Eurytoma and Bruchophagus are often more closely related to other small genera than to other species groups of the same genus. Subsequent taxonomic revisions include elevating the subfamily Rileyinae to a family status and the divisions of the genera Eurytoma and Bruchophagus.  相似文献   

20.
Monophyly of all 11 valid Eimeria species from rabbits (Oryctolagus cuniculus Linnaeus, 1758) was revealed based on nuclear 18S rDNA sequence data. This finding implies that these species, which vary considerably in terms of their morphology and biology, diversified on a single host or several closely related species. Phylogenetic analysis divided rabbit Eimeria species into 2 sister lineages, corresponding to the presence/absence of the oocyst residuum. Other morphological or biological traits (oocyst shape and size, presence/absence of oocyst inner structures, pathogenicity, infection site, pre-patent and patent periods, sporulation time, and number of asexual generations) do not explicitly correlate with the phylogeny of rabbit coccidia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号