首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphoinositides are key regulators of vesicle-mediated protein trafficking. Their roles include recruiting vesicle coat and effector proteins to the site of budding and promoting vesicle fusion. The intracellular levels of phosphoinositides and their localization to intracellular membranes are critical to their functions. An analytical procedure was developed that optimizes the recovery of radiolabeled cellular phosphoinositides. Quantitative analyses of yeast cellular phosphoinositides indicated that this approach is useful for examining the intracellular membrane phosphoinositide compositions related to trafficking phenomena. The approach will also enable investigators to determine whole-plant phosphoinositide compositions that have been difficult to achieve in the past. These analytical advances should be generally applicable to studies of phosphoinositide dynamics related to membrane trafficking in yeast, plant, and animal cells.  相似文献   

2.
Phosphoinositides are vital for many cellular signaling processes, and therefore a number of approaches to manipulating phosphoinositide levels in cells or excised patches of cell membranes have been developed. Among the most common is the use of “short-chain” phosphoinositides, usually dioctanoyl phosphoinositol phosphates. We use isothermal titration calorimetry to determine partitioning of the most abundant phosphoinositol phosphates, PI(4)P and PI(4,5)P2 into models of the intracellular and extracellular facing leaflets of neuronal plasma membranes. We show that phosphoinositide mole fractions in the lipid membrane reach physiological levels at equilibrium with reasonable solution concentrations. Finally we explore the consequences of our results for cellular electrophysiology. In particular, we find that TRPV1 is more selective for PI(4,5)P2 than PI(4)P and activated by extremely low membrane mole fractions of PIPs. We conclude by discussing how the logic of our work extends to other experiments with short-chain phosphoinositides. For delayed rectifier K+ channels, consideration of the membrane mole fraction of PI(4,5)P2 lipids with different acyl chain lengths suggests a different mechanism for PI(4,5)P2 regulation than previously proposed. Inward rectifier K+ channels apparent lack of selectivity for certain short-chain PIPs may require reinterpretation in view of the PIPs different membrane partitioning.  相似文献   

3.
Nuclear phosphoinositide kinases and inositol phospholipids   总被引:5,自引:0,他引:5  
The presence of inositol phospholipids in the nuclei of mammalian cells has by now been well established, as has the presence of the enzymes responsible for their metabolism. However, our understanding of the role of these nuclear phosphoinositides in regulating cellular events has lagged far behind that for its cytosolic counterpart. It is clear, though, that the nuclear phosphoinositide pool is independent of the cytosolic pool and is, therefore, likely to be regulating a unique set of cellular events. As with its cytosolic phosphoinositides, many nuclear phosphoinositides and their metabolic enzymes are located at distinct sub-cellular structures. This arrangement spatially limits the production and activity of inositol phospholipids and is believed to be a major mechanism for regulating their function. Here, we will introduce the components of nuclear inositol phospholipid signal transduction and discuss how their spatial arrangement may dictate which nuclear functions they are modulating.  相似文献   

4.
Inositol signaling and plant growth   总被引:2,自引:0,他引:2  
Living organisms have evolved to contain a wide variety of receptors and signaling pathways that are essential for their survival in a changing environment. Of these, the phosphoinositide pathway is one of the best conserved. The ability of the phosphoinositides to permeate both hydrophobic and hydrophilic environments, and their diverse functions within cells have contributed to their persistence in nature. In eukaryotes, phosphoinositides are essential metabolites as well as labile messengers that regulate cellular physiology while traveling within and between cells. The stereospecificity of the six hydroxyls on the inositol ring provides the basis for the functional diversity of the phosphorylated isomers that, in turn, generate a selective means of intracellular and intercellular communication for coordinating cell growth. Although such complexity presents a difficult challenge for bench scientists, it is ideal for the regulation of cellular functions in living organisms.  相似文献   

5.
Phosphoinositides play important roles in eukaryotic cells, although they constitute a minor fraction of total cellular lipids. Specific kinases and phosphatases function on the regulation of phosphoinositide levels. Phosphatidylinositol 3-phosphate (PtdIns3P), a molecule of phosphoinositides regulates multiple aspects of plant growth and development. In this article, we introduce and discuss the kinases and phosphatases involved in PtdIns3P metabolism and their roles in pollen development and pollen tube growth in Arabidopsis.  相似文献   

6.
Takenawa T  Itoh T 《IUBMB life》2006,58(5-6):296-303
In mammals, there are seven inositolphospholipids, collectively called phosphoinositides that serve as versatile molecules not only in receptor-mediated signal transduction but also in a variety of cellular events such as cytoskeletal reorganization, membrane trafficking, cell proliferation and cell death. Recent studies have revealed that the latter functions are mediated by direct interactions between phosphoinositides and proteins. Such proteins contain two types of phosphoinositide-binding regions; basic amino acid stretch and globular structural domain. Furthermore, spatially restricted compartment of phosphoinositides and their concentration are finely regulated by a large number of phosphoinositide kinases and -phosphatases, controlling localization-specific metabolism of this simple lipid whose aberrations cause various diseases such as cancer and diabetes.  相似文献   

7.
Phosphoinositides are key regulators of diverse cellular processes in eukaryotic cells. Genetic studies in yeast have advanced our understanding of how phosphoinositide-signaling pathways regulate membrane trafficking. Enzymes required for the synthesis (kinases) and turnover (phosphatases) of distinct phosphoinositides have been identified and several downstream effector molecules linked to phosphoinositide signaling have recently been characterized.  相似文献   

8.
Inositol phospholipids have been implicated in almost all aspects of cellular physiology including spatiotemporal regulation of cellular signaling, acquisition of cellular polarity, specification of membrane identity, cytoskeletal dynamics, and regulation of cellular adhesion, motility, and cytokinesis. In this review, we examine the critical role phosphoinositides play in these processes to execute the establishment and maintenance of cellular architecture. Epithelial tissues perform essential barrier and transport functions in almost all major organs. Key to their development and function is the establishment of epithelial cell polarity. We place a special emphasis on highlighting recent studies demonstrating phosphoinositide regulation of epithelial cell polarity and how individual cells use phosphoinositides to further organize into epithelial tissues.  相似文献   

9.
Zhong R  Ye ZH 《Plant physiology》2003,132(2):544-555
The SAC domain was first identified in the yeast (Saccharomyces cerevisiae) Sac1p phosphoinositide phosphatase protein and subsequently found in a number of proteins from yeast and animals. The SAC domain is approximately 400 amino acids in length and is characterized by seven conserved motifs. The SAC domains of several proteins have been recently demonstrated to possess phosphoinositide phosphatase activities. Sac1p has been shown to regulate the levels of various phosphoinositides in the phosphoinositide pool and affect diverse cellular functions such as actin cytoskeleton organization, Golgi function, and maintenance of vacuole morphology. The Arabidopsis genome contains a total of nine genes encoding SAC domain-containing proteins (AtSACs). The SAC domains of the AtSACs possess the conserved amino acid motifs that are believed to be important for the phosphoinositide phosphatase activities of yeast and animal SAC domain proteins. AtSACs can be divided into three subgroups based on their sequence similarities, hydropathy profiles, and phylogenetic relationship. Gene expression analysis demonstrated that the AtSAC genes exhibited differential expression patterns in different organs and, in particular, the AtSAC6 gene was predominantly expressed in flowers. Moreover, the expression of the AtSAC6 gene was highly induced by salinity. These results provide a foundation for future studies on the elucidation of the cellular functions of SAC domain-containing proteins in Arabidopsis.  相似文献   

10.

Background

The complexity of phosphoinositide signaling in higher eukaryotes is partly due to expansion of specific families and types of phosphoinositide kinases (PIKs) that can generate all phosphoinositides via multiple routes. This is particularly evident in the PI3Ks and PIPKs, and it is considered an evolutionary trait associated with metazoan diversification. Yet, there are limited comprehensive studies on the PIK repertoire of free living unicellular organisms.

Methodology/Principal Findings

We undertook a genome-wide analysis of putative PIK genes in two free living ciliated cells, Tetrahymena and Paramecium. The Tetrahymena thermophila and Paramecium tetraurelia genomes were probed with representative kinases from all families and types. Putative homologs were verified by EST, microarray and deep RNA sequencing database searches and further characterized for domain structure, catalytic efficiency, expression patterns and phylogenetic relationships. In total, we identified and characterized 22 genes in the Tetrahymena thermophila genome and 62 highly homologues genes in Paramecium tetraurelia suggesting a tight evolutionary conservation in the ciliate lineage. Comparison to the kinome of fungi reveals a significant expansion of PIK genes in ciliates.

Conclusions/Significance

Our study highlights four important aspects concerning ciliate and other unicellular PIKs. First, ciliate-specific expansion of PI4KIII-like genes. Second, presence of class I PI3Ks which, at least in Tetrahymena, are associated with a metazoan-type machinery for PIP3 signaling. Third, expansion of divergent PIPK enzymes such as the recently described type IV transmembrane PIPKs. Fourth, presence of possible type II PIPKs and presumably inactive PIKs (hence, pseudo-PIKs) not previously described. Taken together, our results provide a solid framework for future investigation of the roles of PIKs in ciliates and indicate that novel functions and novel regulatory pathways of phosphoinositides may be more widespread than previously thought in unicellular organisms.  相似文献   

11.
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.  相似文献   

12.
Phosphoinositide kinases comprise a unique family of enzymes that catalyze the phosphorylation of phosphatidylinositol and its phosphorylated metabolites to produce seven phosphoinositides. Recent advances have revealed that these phosphoinositides have specific physiological functions, such as in actin cytoskeletal reorganization, membrane transport, cell proliferation and survival, in eukaryotic cells and that each phosphoinositide kinase is differently and precisely regulated. Here we describe the diverse regulation and physiological functions of phosphoinositide kinases involving their products.  相似文献   

13.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

14.
Since the late 1980s, a growing body of evidence has documented that phosphoinositides and their metabolizing enzymes, which regulate a large variety of cellular functions both in the cytoplasm and at the plasma membrane, are present also within the nucleus, where they are involved in processes such as cell proliferation, differentiation, and survival. Remarkably, nuclear phosphoinositide metabolism operates independently from that present elsewhere in the cell. Although nuclear phosphoinositides generate second messengers such as diacylglycerol and inositol 1,4,5 trisphosphate, it is becoming increasingly clear that they may act by themselves to influence chromatin structure, gene expression, DNA repair, and mRNA export. The understanding of the biological roles played by phosphoinositides is supported by the recent acquisitions demonstrating the presence in the nuclear compartment of several proteins harboring phosphoinositide-binding domains. Some of these proteins have functional roles in RNA splicing/processing and chromatin assembly. Moreover, recent evidence shows that nuclear phospholipase Cβ1 (a key phosphoinositide metabolizing enzyme) could somehow be involved in the myelodysplastic syndrome, i.e. a hematopoietic disorder that frequently evolves into an acute leukemia. This review aims to highlight the most significant and updated findings about phosphoinositide metabolism in the nucleus under both physiological and pathological conditions.  相似文献   

15.
Tamas Balla   《Cell calcium》2009,45(6):527-534
Increased phosphoinositide turnover was first identified as an early signal transduction event initiated by cell surface receptors that were linked to calcium signaling. Subsequently, the generation of inositol 1,4,5-trisphosphate by phosphoinositide-specific phospholipase C enzymes was defined as the major link between inositide turnover and the cytosolic Ca2+ rise in response to external stimulation. However, in the last decades, phosphoinositides have been emerging as major regulatory lipids involved in virtually every membrane-associated signaling process. Phosphoinositides regulate both the activity and the trafficking of almost all ion channels and transporters contributing to the maintenance of the ionic gradients that are essential for the proper functioning of all eukaryotic cells. Here we summarize the various means by which phosphoinositides affect ion channel functions with special emphasis on Ca2+ signaling and outline the principles that govern the highly compartmentalized roles of these regulatory lipids.  相似文献   

16.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   

17.
EhABP-120 is the first filamin identified in the parasitic protozoan Entamoeba histolytica. Filamins are a family of cross-linking actin-binding proteins that promote a dynamic orthogonal web. They have been reported to interact directly with more than 30 cellular proteins and some phosphoinositides. The biochemical consequences of these interactions may have either positive or negative effects on the cross-linking function and also form a link between the cytoskeleton and plasma membrane. In this study, the EhABP-120 carboxy-terminal domain (END) was biochemically characterized. This domain was able to associate to 3-sulfate galactosyl ceramide, a new lipid target for a member of the filamin family. Also, the END domain was able to dimerize “in vitro.” Molecular modeling analysis showed that the dimeric region is stabilized by a disulfide bond. Electrostatic and docking studies suggest that an electropositive concave pocket at the dimeric END domain interacts simultaneously with several sulfogalactose moieties of the sulfatide.  相似文献   

18.
In mammals, seven phosphoinositides are known to play crucial roles as signaling molecules in a variety of cellular processes. Their synthesis and degradation are thought to be strictly controlled by metabolic enzymes such as phosphoinositide kinases and phosphatases, and their aberrant activities cause diseases. Thus, there is great interest in convenient and high-throughput measurement of such activities for the screening of drugs that enhance or block them. To date, radioactive labeling and colorimetric detection of released inorganic phosphates are mainly used to measure phosphoinositide kinase and phosphatase activities, respectively. Here, we describe a novel method for detecting and quantifying individual phosphoinositides via phosphoinositide-binding domains that exhibit high specificity and affinity toward this lipid. Enzyme-linked immunosorbent assay wells are modified with alkyl chains (C16), which enables more uniform and quantitative immobilization of phosphoinositide-containing liposomes onto the well surfaces. Phosphoinositides, as the substrate or the product, are detected by pleckstrin homology domains that specifically bind to each phosphoinositide. By this method, phosphoinositide contents are measured with higher sensitivities than those by conventional methods. More importantly, both phosphoinositide kinase and phosphatase activities can be measured for purified enzymes and crude cellular lysates. This assay is easy, sensitive, and quantitative and thus may have a variety of applications in the development of diagnostic tests or the screening of therapeutic treatments for diseases such as cancer and diabetes which may be caused by abnormal phosphoinositide metabolism.  相似文献   

19.
In animal cells, phosphoinositides are key components of the inositol 1,4,5-trisphosphate/diacylglycerol-based signaling pathway, but also have many other cellular functions. These lipids are also believed to fulfill similar functions in plant cells, although many details concerning the components of a plant phosphoinositide system, and their regulation are still missing. Only recently have the different phosphoinositide isomers been unambiguously identified in plant cells. Another problem that hinders the study of the function of phosphoinositides and their derivatives, as well as the regulation of their metabolism, in plant cells is the need for a homogenous, easily obtainable material, from which the extraction and purification of phospholipids is relatively easy and quantitatively reproducible. We present here a thorough characterization of the phospholipids purified from [(32)P]orthophosphate- and myo-[2-(3)H]inositol-radiolabeled Arabidopsis thaliana suspension-cultured cells. We then show that NaCl treatment induces dramatic increases in the levels of phosphatidylinositol 4,5-bisphosphate and diacylglycerol pyrophosphate and also affects the turnover of phosphatidylcholine. The increase in phosphatidylinositol 4,5-bisphosphate was also observed with a non-ionic hyperosmotic shock. In contrast, the increase in diacylglycerol pyrophosphate and the turnover of phosphatidylcholine were relatively specific to salt treatments as only minor changes in the metabolism of these two phospholipids were detected when the cells were treated with sorbitol instead of NaCl.  相似文献   

20.
Type III phosphatidylinositol (PtdIns) 4-kinases (PI4Ks) have been previously shown to support plasma membrane phosphoinositide synthesis during phospholipase C activation and Ca2+ signaling. Here, we use biochemical and imaging tools to monitor phosphoinositide changes in the plasma membrane in combination with pharmacological and genetic approaches to determine which of the type III PI4Ks (α or β) is responsible for supplying phosphoinositides during agonist-induced Ca2+ signaling. Using inhibitors that discriminate between the α- and β-isoforms of type III PI4Ks, PI4KIIIα was found indispensable for the production of phosphatidylinositol 4-phosphate (PtdIns4P), phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2], and Ca2+ signaling in angiotensin II (AngII)-stimulated cells. Down-regulation of either the type II or type III PI4K enzymes by small interfering RNA (siRNA) had small but significant effects on basal PtdIns4P and PtdIns(4,5)P2 levels in 32P-labeled cells, but only PI4KIIIα down-regulation caused a slight impairment of PtdIns4P and PtdIns(4,5)P2 resynthesis in AngII-stimulated cells. None of the PI4K siRNA treatments had a measurable effect on AngII-induced Ca2+ signaling. These results indicate that a small fraction of the cellular PI4K activity is sufficient to maintain plasma membrane phosphoinositide pools, and they demonstrate the value of the pharmacological approach in revealing the pivotal role of PI4KIIIα enzyme in maintaining plasma membrane phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号