首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effective management of human cryptosporidiosis requires efficient methods for detection and identification of the species of Cryptosporidium isolates. Identification of isolates to the species level is not routine for diagnostic assessment of cryptosporidiosis, which leads to uncertainty about the epidemiology of the Cryptosporidium species that cause human disease. We developed a rapid and reliable method for species identification of Cryptosporidium oocysts from human fecal samples using terminal restriction fragment polymorphism (T-RFLP) analysis of the 18S rRNA gene. This method generated diagnostic fragments unique to the species of interest. A panel of previously identified isolates of species was blind tested to validate the method, which determined the correct species identity in every case. The T-RFLP profiles obtained for samples spiked with known amounts of Cryptosporidium hominis and Cryptosporidium parvum oocysts generated the two expected diagnostic peaks. The detection limit for an individual species was 1% of the total DNA. This is the first application of T-RFLP to protozoa, and the method which we developed is a rapid, repeatable, and cost-effective method for species identification.  相似文献   

2.
Management and control of cryptosporidiosis in human requires knowledge of Cryptosporidium species contributing to human disease. Markers that are able to provide information below the species level have become important tools for source tracking. Using the hypervariable surface antigen, glycoprotein 60 (GP60), C. hominis (n = 37) and C. parvum (n = 32) isolates from cryptosporidiosis cases in New South Wales, Australia, were characterised. Extensive variation was observed within this locus and the isolates could be divided into 8 families and 24 different subtypes. The subtypes identified have global distributions and indicate that anthroponotic and zoonotic transmission routes contribute to sporadic human cryptosporidiosis in NSW.  相似文献   

3.
The use of molecular tools has led to the identification of several zoonotic Cryptosporidium spp. in dogs and cats. Among them, Cryptosporidium canis and Cryptosporidium felis are dominant species causing canine and feline cryptosporidiosis, respectively. Some Cryptosporidium parvum infections have also been identified in both groups of animals. The identification of C. canis, C. felis and C. parvum in both pets and owners suggests the possible occurrence of zoonotic transmission of Cryptosporidium spp. between humans and pets. However, few cases of such concurrent infections have been reported. Thus, the cross-species transmission of Cryptosporidium spp. between dogs or cats and humans has long been a controversial issue. Recently developed subtyping tools for C. canis and C. felis should be very useful in identification of zoonotic transmission of both Cryptosporidium spp. Data generated using these tools have confirmed the occurrence of zoonotic transmission of these two Cryptosporidium spp. between owners and their pets, but have also shown the potential presence of host-adapted subtypes. Extensive usage of these subtyping tools in epidemiological studies of human cryptosporidiosis is needed for improved understanding of the importance of zoonotic transmission of Cryptosporidium spp. from pets.  相似文献   

4.
Cryptosporidium species (apicomplexan protists) are a major cause of diarrhoeal disease (= cryptosporidiosis) in humans worldwide. The impact of cryptosporidiosis is also compounded by the spread of HIV/AIDS and a lack of cost-effective anti-cryptosporidial chemotherapeutics or vaccines. Mitigation of the impact of cryptosporidiosis in humans needs to focus on prevention and control strategies, built on a sound understanding of the epidemiology of Cryptosporidium species. Refined epidemiological studies rely on the use of molecular tools employing informative genetic markers. Currently, the 60-kDa glycoprotein gene (gp60) is the most suitable and widely used genetic marker for Cryptosporidium species infecting humans. Here, we undertake an analysis of all publicly-available gp60 sequence data and associated literature for C. hominis and C. parvum, and yield useful insights into the richness, diversity and distribution of genetic variants, and link these variants to human cryptosporidiosis. This global analysis reveals that, despite high genetic richness in Cryptosporidium isolates from humans, there is a surprisingly low diversity. It also highlights limited knowledge about the genetics of cryptosporidiosis in developing nations and in many animals that might act as infection sources. Clearly, there is a major need for more comprehensive studies of Cryptosporidium infecting humans and other animals in Africa and Asia. As molecular technologies improve and become affordable, future studies should utilize “next generation” sequencing and bioinformatic platforms to conduct comparative ‘genome sequence surveys’ to test the validity of current genetic classifications based on gp60 data. Complemented by in vitro and in vivo investigations, these biotechnological advances will also assist significantly in the search for new intervention strategies against human cryptosporidiosis.  相似文献   

5.
Surveillance for Cryptosporidium in the United States indicates that the reported incidence of infection has increased dramatically since 2004. The reasons for this increase are unclear but might be caused by an actual increase in incidence, improved surveillance, improved awareness about cryptosporidiosis, and/or increases in testing practices resulting from the licensing of the first-ever treatment for cryptosporidiosis. While regional differences remain, the incidence of cryptosporidiosis appears to be increasing across the United States. Onset of illness is most common during the summer, particularly among younger children.Cryptosporidiosis case reporting also influences outbreak detection and reporting; the recent rise in cases coincides with an increase in the number of reported cryptosporidiosis outbreaks, particularly in treated recreational water venues. Risk factors include ingesting contaminated recreational or drinking water, exposure to infected animals, having close contacts with cryptosporidiosis, travel to disease-endemic areas, and ingestion of contaminated food. Advances in molecular characterization of clinical specimens have improved our understanding of the changing epidemiology and risk factors.Prevention and control of cryptosporidiosis requires continued efforts to interrupt the transmission of Cryptosporidium through water, food, and contact with infected persons or animals. Of particular importance is continued improvement and monitoring of drinking water treatment and advances in the design, operation, and management of recreational water venues coupled with behavioral changes among the swimming public.  相似文献   

6.
7.
Cryptosporidium species and Giardia intestinalis are the most common enteric protozoan pathogens affecting humans worldwide. In recent years, nitazoxanide has been licensed in the United States for the treatment of cryptosporidiosis in non-immunodeficient children and adults, becoming the first drug approved for treating this disease. There is a need for a highly effective treatment for cryptosporidiosis in immunodeficient patients, but the quest for such a drug has proven to be elusive. While not effective against Cryptosporidium, nitroimidazoles such as metronidazole or tinidazole are effective treatments for giardiasis and can be administered as a single dose. Albendazole and nitazoxanide are effective against giardiasis but require multiple doses. Nitazoxanide is the first new drug developed for treating giardiasis in more than 20 years. New potentially promising drug targets in Cryptosporidium and Giardia have been identified, but there appears to be little activity toward clinical development of new drugs.  相似文献   

8.
Molecular epidemiology of cryptosporidiosis: An update   总被引:1,自引:0,他引:1  
Molecular tools have been developed to detect and differentiate Cryptosporidium at the species/genotype and subtype levels. These tools have been increasingly used in characterizing the transmission of Cryptosporidium spp. in humans and animals. Results of these molecular epidemiologic studies have led to better appreciation of the public health importance of Cryptosporidium species/genotypes in various animals and improved understanding of infection sources in humans. Geographic, seasonal and socioeconomic differences in the distribution of Cryptosporidium spp. in humans have been identified, and have been attributed to differences in infection sources and transmission routes. The transmission of C. parvum in humans is mostly anthroponotic in developing countries, with zoonotic infections play an important role in developed countries. Species of Cryptosporidium and subtype families of C. hominis have been shown to induce different clinical manifestations and have different potential to cause outbreaks. The wide use of a new generation of genotyping and subtyping tools in well designed epidemiologic studies should lead to a more in-depth understanding of the epidemiology of cryptosporidiosis in humans and animals.  相似文献   

9.
In order to examine the prevalence of Cryptosporidium infection in wild rodents and insectivores of South Korea and to assess their potential role as a source of human cryptosporidiosis, a total of 199 wild rodents and insectivore specimens were collected from 10 regions of South Korea and screened for Cryptosporidium infection over a period of 2 years (2012-2013). A nested-PCR amplification of Cryptosporidium oocyst wall protein (COWP) gene fragment revealed an overall prevalence of 34.2% (68/199). The sequence analysis of 18S rRNA gene locus of Cryptosporidium was performed from the fecal and cecum samples that tested positive by COWP amplification PCR. As a result, we identified 4 species/genotypes; chipmunk genotype I, cervine genotype I, C. muris, and a new genotype which is closely related to the bear genotype. The new genotype isolated from 12 Apodemus agrarius and 2 Apodemus chejuensis was not previously identified as known species or genotype, and therefore, it is supposed to be a novel genotype. In addition, the host spectrum of Cryptosporidium was extended to A. agrarius and Crosidura lasiura, which had not been reported before. In this study, we found that the Korean wild rodents and insectivores were infected with various Cryptosporidium spp. with large intra-genotypic variationa, indicating that they may function as potential reservoirs transmitting zoonotic Cryptosporidium to livestock and humans.  相似文献   

10.

Background

Despite their wide occurrence, cryptosporidiosis and giardiasis are considered neglected diseases by the World Health Organization. The epidemiology of these diseases and microsporidiosis in humans in developing countries is poorly understood. The high concentration of pathogens in raw sewage makes the characterization of the transmission of these pathogens simple through the genotype and subtype analysis of a small number of samples.

Methodology/Principal Findings

The distribution of genotypes and subtypes of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in 386 samples of combined sewer systems from Shanghai, Nanjing and Wuhan and the sewer system in Qingdao in China was determined using PCR-sequencing tools. Eimeria spp. were also genotyped to assess the contribution of domestic animals to Cryptosporidium spp., G. duodenalis, and E. bieneusi in wastewater. The high occurrence of Cryptosporidium spp. (56.2%), G. duodenalis (82.6%), E. bieneusi (87.6%), and Eimeria/Cyclospora (80.3%) made the source attribution possible. As expected, several human-pathogenic species/genotypes, including Cryptosporidium hominis, Cryptosporidium meleagridis, G. duodenalis sub-assemblage A-II, and E. bieneusi genotype D, were the dominant parasites in wastewater. In addition to humans, the common presence of Cryptosporidium spp. and Eimeria spp. from rodents indicated that rodents might have contributed to the occurrence of E. bieneusi genotype D in samples. Likewise, the finding of Eimeria spp. and Cryptosporidium baileyi from birds indicated that C. meleagridis might be of both human and bird origins.

Conclusions/Significance

The distribution of Cryptosporidium species, G. duodenalis genotypes and subtypes, and E. bieneusi genotypes in urban wastewater indicates that anthroponotic transmission appeared to be important in epidemiology of cryptosporidiosis, giardiasis, and microsporidiosis in the study areas. The finding of different distributions of subtypes between Shanghai and Wuhan was indicative of possible differences in the source of C. hominis among different areas in China.  相似文献   

11.

Background

Cryptosporidiosis is an important cause for chronic diarrhea and death in HIV/AIDS patients. Among common Cryptosporidium species in humans, C. parvum is responsible for most zoonotic infections in industrialized nations. Nevertheless, the clinical significance of C. parvum and role of zoonotic transmission in cryptosporidiosis epidemiology in developing countries remain unclear.

Methodology/Principal Findings

In this cross-sectional study, 520 HIV/AIDS patients were examined for Cryptosporidium presence in stool samples using genotyping and subtyping techniques. Altogether, 140 (26.9%) patients were positive for Cryptosporidium spp. by PCR-RFLP analysis of the small subunit rRNA gene, belonging to C. parvum (92 patients), C. hominis (25 patients), C. viatorum (10 patients), C. felis (5 patients), C. meleagridis (3 patients), C. canis (2 patients), C. xiaoi (2 patients), and mixture of C. parvum and C. hominis (1 patient). Sequence analyses of the 60 kDa glycoprotein gene revealed a high genetic diversity within the 82 C. parvum and 19 C. hominis specimens subtyped, including C. parvum zoonotic subtype families IIa (71) and IId (5) and anthroponotic subtype families IIc (2), IIb (1), IIe (1) and If-like (2), and C. hominis subtype families Id (13), Ie (5), and Ib (1). Overall, Cryptosporidium infection was associated with the occurrence of diarrhea and vomiting. Diarrhea was attributable mostly to C. parvum subtype family IIa and C. hominis, whereas vomiting was largely attributable to C. hominis and rare Cryptosporidium species. Calf contact was identified as a significant risk factor for infection with Cryptosporidium spp., especially C. parvum subtype family IIa.

Conclusions/Significance

Results of the study indicate that C. parvum is a major cause of cryptosporidiosis in HIV-positive patients and zoonotic transmission is important in cryptosporidiosis epidemiology in Ethiopia. In addition, they confirm that different Cryptosporidium species and subtypes are linked to different clinical manifestations.  相似文献   

12.
Cryptosporidium species are common parasites of wild placental mammals. Recent parasitological studies combined with molecular genotyping techniques have been providing valuable new insight into the host specificity and potential transmission of various Cryptosporidium species/genotypes among animals and between these animals and humans. Although Cryptosporidium in wild animals may possess a potential public health problem due to oocyst contamination in the environment, studies at various regions of the world have indicated a strong host-adaptation by these parasites and a limited potential of cross-species transmission of cryptosporidiosis among placental mammals, suggesting that these animals are probably not a major reservoir for human infection. However, Cryptosporidium species/genotypes in placental animals have been reported occasionally in humans. Therefore, public health significance of some Cryptosporidium species in wild placental mammals, such as the cervine genotype, should not be overlooked and should be further studied.  相似文献   

13.
Cryptosporidiosis belongs to the important parasitic infections with zoonotic potential and the occurrence in European countries is rare. The first cases of cryptosporidiosis caused by Cryptosporidium hominis detected in the Slovak republic were described here. Collection of examined humans consisted of five family members. Faecal specimens were examined by formalin sedimentation, by the Sheather??s sugar flotation and by immunochromatography and visualised by the Ziehl?CNeelsen acid fast stain. A fragment of the Cryptosporidium small subunit ribosomal RNA gene was amplified by nested polymerase chain reaction and species was determined by restriction fragment length polymorphism analysis with the endonucleases SspI and VspI. C. hominis was found in faeces of two immunocompetent siblings (a 7-year-old boy and a 2-year-old girl). The symptoms occurred only in the boy as gastrointestinal disorders lasting 5?days, and manifested by abdominal pain, an elevated body temperature (37.2?°C), mild diarrhoea, accompanied by lassitude, depression and anorexia. Ultrasonic scan revealed enlarged spleen and mezenteric lymph nodes. Microscopic examination of the stool sample revealed numerous Cryptosporidium oocysts. The DNA typing identified C. hominis subtype IbA10G2. Cryptosporidium was also detected in the boy??s sister without any complications and symptoms. Their father, mother and grandmother were parasitologically negative. The source of infection remained unknown. Human cases in present study reflect necessity of systematic attention on intestinal parasites diagnostic inclusive of cryptosporidia.  相似文献   

14.
Cryptosporidiosis is a worldwide-diffused protozoan disease causing important economic losses to animal husbandry and livestock production. Additionally, several species/genotypes of Cryptosporidium have a relevant zoonotic potential and ruminants may be important sources of infection for human beings. Nonetheless, in Europe, little is known of the presence of Cryptosporidium in sheep nor on the species/genotypes involved. To obtain information on the occurrence of cryptosporidiosis in lambs and the potential zoonotic role of the Cryptosporidium isolates, one hundred and forty-nine faecal samples individually collected from lambs in central Italy have been examined for the presence of Cryptosporidium. All faecal specimens were processed with a commercial ELISA kit immunoassay and all ELISA-positive samples were further analyzed genetically. Twenty-six ELISA-positive samples scored positive at the PCR and the sequences obtained displayed 100% identity with the zoonotic Cryptosporidum parvum. This work suggests for the first time that lambs in Italy may shed C. parvum, thus representing a potential public health hazard.  相似文献   

15.
Whilst considerable information is available for avian cryptosporidiosis, scant information is available for Cryptosporidium infections in fish and amphibians. The present review details recent studies in avian cryptosporidiosis and our current knowledge of piscine and amphibian infections.  相似文献   

16.
Background Cryptosporidium are parasitic protozoa that infect humans, domestic animals, and wildlife globally. In the United States, cryptosporidiosis occurs in an estimated 750,000 persons annually, and is primarily caused by either of the Cryptosporidium parvum genotypes 1 and 2, exposure to which occurs through ingestion of food or water contaminated with oocytes shed from infected hosts. Although most cryptosporidiosis cases are caused by genotype 1 and are of human origin, the zoonotic sources of genotype 2, such as livestock, are increasingly recognized as important for understanding human disease patterns. Social inequality could mediate patterns of human exposure and infection by placing individuals in environments where food or water contamination and livestock contact is high or through reducing the availability of educational and sanitary resources required to avoid exposure.Conclusions/SignificanceThese results refute assertions that cryptosporidiosis in the United States is independent of social marginalization and poverty, and carry implications for targeted public health interventions for Cryptosporidium infection in resource-poor groups. Future longitudinal and multilevel studies are necessary to elucidate the complex interactions between ecological factors, social inequality, and Cryptosporidium dynamics.  相似文献   

17.
This study describes cryptosporidiosis in an overwintering group of 15 European hedgehogs (Erinaceus europaeus), comprising 3 adults and 12 juveniles. Four juvenile hedgehogs were hospitalised with anorexia, malodorous diarrhoea and dehydration. Immediate parasitological examinations revealed the presence of Cryptosporidium sp. in these animals and also in 5 other juveniles. All hedgehogs were coproscopically monitored for 4 months over the winter season. Shedding of Cryptosporidium oocysts persisted from 6 to 70 days. Repeated shedding of Cryptosporidium oocysts occurred in 3 animals after 4 months subsequent to the first outbreak. Clinical signs were observed only at the beginning of the outbreak (apathy, anorexia, general weakness, mild dehydration, and malodorous faeces with changed consistence – soft/diarrhoea) in the 4 hospitalised juveniles. Overall 11 hedgehogs were Cryptosporidium-positive, both microscopically and by PCR methods. Sequence analyses of SSU rRNA and gp60 genes revealed the presence of C. parvum IIdA18G1 subtype in all positive hedgehogs. Moreover, 3 hedgehogs had a mixed infection of the zoonotic C. parvum and C. erinacei XIIIaA19R13 subtype. Cryptosporidium infections can be rapidly spread among debilitated animals and the positive hedgehogs released back into the wild can be a source of the infection for individuals weakened after hibernation.  相似文献   

18.
Little is known about the epidemiology of Cryptosporidium in Jordan and no genotyping studies have been conducted on Cryptosporidium isolates from humans or animals from Jordan. Genotyping of 44 Cryptosporidium isolates from Jordanian children at the 18S rRNA locus and a unique diagnostic locus identified four Cryptosporidium species; C. parvum (22), C. hominis (20), C. meleagridis (1) and C. canis (1). Sub-genotype analysis of 29 isolates at the 60-kDa glycoprotein (GP60) locus identified three C. parvum, two C. hominis subtype families and one C. meleagridis subtype. Several rare and novel subtypes were identified indicating unique endemicity and transmission of Cryptosporidium in Jordan.  相似文献   

19.

Background

Whole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA.

Results

The IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585).The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing.

Conclusion

This represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.  相似文献   

20.
Both Cryptosporidium spp. and Giardia duodenalis are enteric protozoan parasites that infect a wide variety of domestic animals as well as humans worldwide, causing diarrheal diseases. Giardia duodenalis assemblages C and D are specific to canine hosts and zoonotic assemblages A and B are also found in dogs as a reservoir host. In dogs, Cryptosporidium canis is the host-specific species while humans are infected by C. hominis and C. parvum and at least another 16 zoonotic Cryptosporidium species have been reported causing human infections, with C. meleagridis, C. viatorum, and C. ubiquitum being the most frequent. The objective of this study was to determine the prevalence of Cryptosporidium spp. and G. duodenalis from stray dogs in areas of Bangkok and to identify the species and assemblages. Fecal samples (540) were collected from dogs residing in 95 monasteries in 48 districts in the Bangkok metropolitan area. Nested Polymerase Chain Reaction (PCR) was performed using the ssu-rRNA gene for both parasites. In total, 3.0% (16/540) samples were positive for G. duodenalis, with most being G. duodenalis assemblage D (7/16) followed by assemblage C (7/16) and zoonotic assemblage A (2/16). The prevalence of Cryptosporidium spp. was 0.7% (4/540) based on the PCR results and all were the dog genotype C. canis. These results indicated that dogs residing in Bangkok monasteries poses a limited role as source of human giardiosis and cryptosporidiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号