首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptosporidium is a highly prevalent protozoan parasite that is the second leading cause of childhood morbidity and mortality due to diarrhoea in developing countries, and causes a serious diarrheal syndrome in calves, lambs and goat kids worldwide. Development of fully effective drugs against Cryptosporidium has mainly been hindered by the lack of genetic tools for functional characterization and validation of potential molecular drug targets in the parasite. Herein, we report the development of a morpholino-based in vivo approach for Cryptosporidium parvum gene knockdown to facilitate determination of the physiological roles of the parasite’s genes in a murine model. We show that, when administered intraperitoneally at non-toxic doses, morpholinos targeting C. parvum lactate dehydrogenase (CpLDH) and sporozoite 60K protein (Cp15/60) were able to specifically and sustainably down-regulate the expression of CpLDH and Cp15/60 proteins, respectively, in C. parvum-infected interferon-γ knockout mice. Over a period of 6?days of daily administration of target morpholinos, CpLDH and Cp15/60 proteins were down-regulated by 20- to 50-fold, and 10- to 20-fold, respectively. Knockdown of CpLDH resulted in approximately 80% reduction in oocyst load in the feces of mice, and approximately 70% decrease in infectivity of the sporozoites excysted from the shed oocysts. Cp15/60 knockdown did not affect oocyst shedding nor infectivity but, nevertheless, provided a proof-of-principle for the resilience of the morpholino-mediated C. parvum gene knockdown system in vivo. Together, our findings provide a genetic tool for deciphering the physiological roles of C. parvum genes in vivo, and validate CpLDH as an essential gene for the growth and viability of C. parvum in vivo.  相似文献   

2.
Throughout their life cycle, Babesia parasites alternate between a mammalian host, where they cause babesiosis, and the tick vector. Transition between hosts results in distinct environmental signals that influence patterns of gene expression, consistent with the morphological and functional changes operating in the parasites during their life stages. In addition, comparing differential patterns of gene expression among mammalian and tick parasite stages can provide clues for developing improved methods of control. Hereby, we upgraded the genome assembly of Babesia bovis, a bovine hemoparasite, closing a 139 kbp gap, and used RNA-Seq datasets derived from mammalian blood and tick kinete stages to update the genome annotation. Of the originally annotated genes, 1,254 required structural changes, and 326 new genes were identified, leading to a different predicted proteome compared to the original annotation. Next, the RNA-Seq data was used to identify B. bovis genes that were differentially expressed in the vertebrate and arthropod hosts. In blood stages, 28% of the genes were upregulated up to 300 fold, whereas 26% of the genes in kinetes, a tick stage, were upregulated up to >19,000 fold. We thus discovered differentially expressed genes that may play key biological roles and serve as suitable targets for the development of vaccines to control bovine babesiosis.  相似文献   

3.
Despite the public health impact of childhood diarrhea caused by Cryptosporidium, effective drugs and vaccines against this parasite are unavailable. Efforts to identify vaccine targets have focused on critical externally exposed virulence factors expressed in the parasite s invasive stages. However, no single surface antigen has yet been found that can elicit a significant protective immune response and it is likely that pooling multiple immune targets will be necessary. Discovery of surface proteins on Cryptosporidium sporozoites is therefore vital to this effort to develop a multi-antigenic vaccine. In this study we applied a novel single-domain camelid antibody (VHH) selection method to identify immunogenic proteins expressed on the surface of Cryptosporidium parvum sporozoites. By this approach, VHHs were identified that recognize two sporozoite surface-exposed antigens, the previously identified gp900 and an unrecognized immunogenic protein, Cp-P34. This Cp-P34 antigen, which contains multiple Membrane Occupation and Recognition Nexus (MORN) repeats, is found in excysted sporozoites as well as in the parasite s intracellular stages. Cp-P34 appears to accumulate inside the parasite and transiently appears on the surface of sporozoites to be shed in trails. Identical or nearly identical orthologs of Cp-P34 are found in the Cryptosporidium hominis and Cryptosporidium tyzzeri genomes. Except for the conserved MORN motifs, the Cp-P34 gene shares no significant homology with genes of other protozoans and thus appears to be unique to Cryptosporidium spp. Cp-P34 elicits immune responses in naturally exposed alpacas and warrants further investigation as a potential vaccine candidate.  相似文献   

4.
Cryptosporidium parvum oocysts, which are spread by the fecal-oral route, have a single, multilayered wall that surrounds four sporozoites, the invasive form. The C. parvum oocyst wall is labeled by the Maclura pomifera agglutinin (MPA), which binds GalNAc, and the C. parvum wall contains at least two unique proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) identified by monoclonal antibodies. C. parvum sporozoites have on their surface multiple mucin-like glycoproteins with Ser- and Thr-rich repeats (e.g., gp40 and gp900). Here we used ruthenium red staining and electron microscopy to demonstrate fibrils, which appear to attach or tether sporozoites to the inner surface of the C. parvum oocyst wall. When disconnected from the sporozoites, some of these fibrillar tethers appear to collapse into globules on the inner surface of oocyst walls. The most abundant proteins of purified oocyst walls, which are missing the tethers and outer veil, were COWP1, COWP6, and COWP8, while COWP2, COWP3, and COWP4 were present in trace amounts. In contrast, MPA affinity-purified glycoproteins from C. parvum oocysts, which are composed of walls and sporozoites, included previously identified mucin-like glycoproteins, a GalNAc-binding lectin, a Ser protease inhibitor, and several novel glycoproteins (C. parvum MPA affinity-purified glycoprotein 1 [CpMPA1] to CpMPA4). By immunoelectron microscopy (immuno-EM), we localized mucin-like glycoproteins (gp40 and gp900) to the ruthenium red-stained fibrils on the inner surface wall of oocysts, while antibodies to the O-linked GalNAc on glycoproteins were localized to the globules. These results suggest that mucin-like glycoproteins, which are associated with the sporozoite surface, may contribute to fibrils and/or globules that tether sporozoites to the inner surface of oocyst walls.Cryptosporidium parvum and the related species Cryptosporidium hominis are apicomplexan parasites, which are spread by the fecal-oral route in contaminated water and cause diarrhea, particularly in immunocompromised hosts (1, 12, 39, 47). The infectious and diagnostic form of C. parvum is the oocyst, which has a single, multilayered, spherical wall that surrounds four sporozoites, the invasive forms (14, 27, 31). The outermost layer of the C. parvum oocyst wall is most often absent from electron micrographs, as it is labile to bleach used to remove contaminating bacteria from C. parvum oocysts (27). We will refer to this layer as the outer veil, which is the term used for a structure with an identical appearance on the surface of the oocyst wall of another apicomplexan parasite, Toxoplasma gondii (10). At the center of the C. parvum oocyst wall is a protease-resistant and rigid bilayer that contains GalNAc (5, 23, 43). When excysting sporozoites break through the oocyst wall, the broken edges of this bilayer curl in, while the overall shape of the oocyst wall remains spherical.The inner, moderately electron-dense layer of the C. parvum oocyst wall is where the Cryptosporidium oocyst wall proteins (Cryptosporidium oocyst wall protein 1 [COWP1] and COWP8) have been localized with monoclonal antibodies (4, 20, 28, 32). COWPs, which have homologues in Toxoplasma, are a family of nine proteins that contain polymorphic Cys-rich and His-rich repeats (37, 46). Finally, on the inner surface of C. parvum oocyst walls are knob-like structures, which cross-react with an anti-oocyst monoclonal antibody (11).Like other apicomplexa (e.g., Toxoplasma and Plasmodium), sporozoites of C. parvum are slender, move by gliding motility, and release adhesins from apical organelles when they invade host epithelial cells (1, 8, 12, 39). Unlike other apicomplexa, C. parvum parasites are missing a chloroplast-derived organelle called the apicoplast (1, 47, 49). C. parvum sporozoites have on their surface unique mucin-like glycoproteins, which contain Ser- and Thr-rich repeats that are polymorphic and may be modified by O-linked GalNAc (4-7, 21, 25, 26, 30, 32, 34, 35, 43, 45). These C. parvum mucins, which are highly immunogenic and are potentially important vaccine candidates, include gp900 and gp40/gp15 (4, 6, 7, 25, 26). gp40/gp15 is cleaved by furin-like proteases into two peptides (gp40 and gp15), each of which is antigenic (42). gp900, gp40, and gp15 are shed from the surface of the C. parvum sporozoites during gliding motility (4, 7, 35).The studies presented here began with electron microscopic observations of C. parvum oocysts stained with ruthenium red (23), which revealed novel fibrils or tethers that extend radially from the inner surface of the oocyst wall to the outer surface of sporozoites. We hypothesized that at least some of these fibrillar tethers might be the antigenic mucins, which are abundant on the surface of C. parvum sporozoites. To test this hypothesis, we used mass spectroscopy to identify oocyst wall proteins and sporozoite glycoproteins and used deconvolving and immunoelectron microscopy (immuno-EM) with lectins and anti-C. parvum antibodies to directly label the tethers.  相似文献   

5.
6.
In this study, we described a novel display method to identify surface adhesion proteins of Cryptosporidium parvum. A cDNA library of the sporozoite and oocyst stages of C. parvum was expressed on ribosome and selectively and specifically screened with intestinal epithelial cells (IECs) from newborn Cryptosporidium-free Holstein calves. Proteins were then enriched using a multi-step panning procedure. A new surface adherence protein of C. parvum was selected, named Cp20. Sequence analyses showed that Cp20 has a N-terminal signal peptide and four transmembrane regions. Indirect immunofluorescence assay (IFA) using an antibody specific for rCp20 demonstrated that the antibody specifically bound to the surface of sporozoites and oocysts. The recombinant plasmid pVAX1-Cp20 was constructed to examine the potential of the Cp20 gene as a target for specific preventive and therapeutic measures for cryptosporidiosis. The in vivo efficacies of the DNA vaccine was tested in BALB/c mice. The results indicated that the DNA vaccine elicited significant antibody responses and specific cellular responses when compared to control mice that received vector only or PBS. The DNA vaccine induced strong protective immune response against C. parvum and lower level of the oocysts shedding after challenge infection. This study suggested that Cp20 could serve as an effective target for specific preventive and therapeutic measures for cryptosporidiosis.  相似文献   

7.
8.
Cryptosporidium parvum oocysts isolated from calf feces were examined by scanning electron microscopy during excystation. Intact C. parvum oocysts were spheroid to ellipsoid, ?3.5 × 4.0 μm, with length: width ratio = 1.17. The oocyst wall had a single suture at one pole, which spanned 1/3 to 1/2 the circumference of the oocyst. During excystation the suture dissolved, resulting in a slit-like opening, which the sporozoites used to exit the oocyst. Sporozoites were 3.8 times 0.6 μm and had a rough outer surface.  相似文献   

9.
10.
Two human single chain variable fragment (scFv) libraries were used to select clones that bound to the surface glycoprotein S16 of Cryptosporidium parvum. Panning of the Tomlinson libraries I and J resulted in the isolation of nine distinct clones. Of the four clones which had full-length scFv, three contained stop codons. The remaining five clones were truncated, with four missing the heavy chain, and one missing most of the light chain. The full-length clones exhibited better binding to native C. parvum proteins and recombinant S16 than the truncated clones, with the exception of one truncated clone. None of the selected clones cross-reacted with Giardia lamblia, Escherichia coli, Streptococcus pyogenes, Listeria monocytogenes, Bacillus cereus or another immunogenic target of C. parvum, P23. Clones expressed as the soluble scFv-gIIIp construct were able to detect C. parvum native proteins and sporozoites. Panning from naïve libraries was an useful method for isolation and identification of recombinant antibodies that have the potential for use in pathogen detection and immunotherapy.  相似文献   

11.
The malaria parasite sporozoite transmission stage develops and differentiates within parasite oocysts on the Anopheles mosquito midgut. Successful inoculation of the parasite into a mammalian host is critically dependent on the sporozoite's ability to first infect the mosquito salivary glands. Remarkable changes in tissue infection competence are observed as the sporozoites transit from the midgut oocysts to the salivary glands. Our microarray analysis shows that compared to oocyst sporozoites, salivary gland sporozoites upregulate expression of at least 124 unique genes. Conversely, oocyst sporozoites show upregulation of at least 47 genes (upregulated in oocyst sporozoites [UOS genes]) before they infect the salivary glands. Targeted gene deletion of UOS3, encoding a putative transmembrane protein with a thrombospondin repeat that localizes to the sporozoite secretory organelles, rendered oocyst sporozoites unable to infect the mosquito salivary glands but maintained the parasites' liver infection competence. This phenotype demonstrates the significance of differential UOS expression. Thus, the UIS-UOS gene classification provides a framework to elucidate the infectivity and transmission success of Plasmodium sporozoites on a whole-genome scale. Genes identified herein might represent targets for vector-based transmission blocking strategies (UOS genes), as well as strategies that prevent mammalian host infection (UIS genes).  相似文献   

12.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% ± 5.2% [mean ± standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 μm, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

13.
14.
15.
Concurrent with recent advances seen with Cryptosporidium parvum detection in both treated and untreated water is the need to properly evaluate these advances. A micromanipulation method by which known numbers of C. parvum oocysts, even a single oocyst, can be delivered to a test matrix for detection sensitivity is presented. Using newly developed nested PCR-restriction fragment length polymorphism primers, PCR sensitivity was evaluated with 1, 2, 3, 4, 5, 7, or 10 oocysts. PCR detection rates (50 samples for each number of oocysts) ranged from 38% for single oocysts to 92% for 5 oocysts, while 10 oocysts were needed to achieve 100% detection. The nested PCR conditions amplified products from C. parvum, Cryptosporidium baileyi, and Cryptosporidium serpentis but no other Cryptosporidium sp. or protozoan tested. Restriction enzyme digestion with VspI distinguished between C. parvum genotypes 1 and 2. Restriction enzyme digestion with DraII distinguished C. parvum from C. baileyi and C. serpentis. Use of known numbers of whole oocysts encompasses the difficulty of liberating DNA from the oocyst and eliminates the standard deviation inherent within a dilution series. To our knowledge this is the first report in which singly isolated C. parvum oocysts were used to evaluate PCR sensitivity. This achievement illustrates that PCR amplification of a single oocyst is feasible, yet sensitivity remains an issue, thereby illustrating the difficulty of dealing with low oocyst numbers when working with environmental water samples.  相似文献   

16.
Microelectrophoresis is a common technique for probing the surface chemistry of the Cryptosporidium parvum oocyst. Results of previous studies of the electrophoretic mobility of C. parvum oocysts in which microelectrophoresis was used are incongruent. In this work we demonstrated that capillary electrophoresis may also be used to probe the surface characteristics of C. parvum oocysts, and we related the surface chemistry of C. parvum oocysts to their stability in water. Capillary electrophoresis results indicated that oocysts which were washed in a phosphate buffer solution had neutrally charged surfaces. Inactivation of oocysts with formalin did not influence their electrophoretic mobility, while oocyst populations that were washed in distilled water consisted of cells with both neutral and negative surface charges. These results indicate that washing oocysts in low-ionic-strength distilled water can impart a negative charge to a fraction of the oocysts in the sample. Rapid coagulation experiments indicated that oocysts did not aggregate in a 0.5 M NaCl solution; oocyst stability in the salt solution may have been the result of Lewis acid-base forces, steric stabilization, or some other factor. The presence of sucrose and Percoll could not be readily identified on the surface of C. parvum oocysts by attenuated total reflectance-Fourier transform infrared spectroscopy, suggesting that these purification reagents may not be responsible for the stability of the uncharged oocysts. These findings imply that precipitate enmeshment may be the optimal mechanism of coagulation for removal of oocysts in water treatment systems. The results of this work may help elucidate the causes of variation in oocyst surface characteristics, may ultimately lead to improved removal efficiencies in full-scale water treatment systems, and may improve fate and transport predictions for oocysts in natural systems.  相似文献   

17.
Cryptosporidium parvum is a waterborne pathogen that poses potential risk to drinking water consumers. The detection of Cryptosporidium oocysts, its transmissive stage, is used in the latest U.S. Environmental Protection Agency method 1622, which utilizes organic fluorophores such as fluorescein isothiocyanate (FITC) to label the oocysts by conjugation with anti-Cryptosporidium sp. monoclonal antibody (MAb). However, FITC exhibits low resistance to photodegradation. This property will inevitably limit the detection accuracy after a short period of continuous illumination. In view of this, the use of inorganic fluorophores, such as quantum dot (QD), which has a high photobleaching threshold, in place of the organic fluorophores could potentially enhance oocyst detection. In this study, QD605-streptavidin together with biotinylated MAb was used for C. parvum oocyst detection. The C. parvum oocyst detection sensitivity increased when the QD605-streptavidin concentration was increased from 5 to 15 nM and eventually leveled off at a saturation concentration of 20 nM and above. The minimum QD605-streptavidin saturation concentration for detecting up to 4,495 ± 501 oocysts (mean ± standard deviation) was determined to be 20 nM. The difference in the enumeration between 20 nM QD605-streptavidin with biotinylated MAb and FITC-MAb was insignificant (P > 0.126) when various C. parvum oocyst concentrations were used. The QD605 was highly photostable while the FITC intensity decreased to 19.5% ± 5.6% of its initial intensity after 5 min of continuous illumination. The QD605-based technique was also shown to be sensitive for oocyst detection in reservoir water. This observation showed that the QD method developed in this study was able to provide a sensitive technique for detecting C. parvum oocysts with the advantage of having a high photobleaching threshold.  相似文献   

18.
19.
Cryptosporidium parvum and C. hominis have been the cause of large and serious outbreaks of waterborne cryptosporidiosis. A specific and sensitive recovery-detection method is required for control of this pathogen in drinking water. In the present study, nested PCR-restriction fragment length polymorphism (RFLP), which targets the divergent Cpgp40/15 gene, was developed. This nested PCR detected only the gene derived from C. parvum and C. hominis strains, and RFLP was able to discriminate between the PCR products from C. parvum and C. hominis. To evaluate the sensitivity of nested PCR, C. parvum oocysts inoculated in water samples of two different turbidities were recovered by immunomagnetic separation (IMS) and detected by nested PCR and fluorescent antibody assay (FA). Genetic detection by nested PCR and oocyst number confirmed by FA were compared, and the results suggested that detection by nested PCR depends on the confirmed oocyst number and that nested PCR in combination with IMS has the ability to detect a single oocyst in a water sample. We applied an agitation procedure with river water solids to which oocysts were added to evaluate the recovery and detection by the procedure in environmental samples and found some decrease in the rate of detection by IMS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号