首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the electrogenic nature of the transport process mediated by the rat sodium-dependent multivitamin transporter. In Cos-7 cells, the relationship of Na(+) concentration versus biotin and pantothenate uptake rate was sigmoidal with a Na(+):substrate stoichiometry of 2:1. In Cos-7 cells expressing rat SMVT biotin transport was significantly higher when the membrane was hyperpolarized and considerably reduced when the membrane was depolarized. Similarly, biotin uptake in X. laevis oocytes expressing rat SMVT was inhibited with depolarized oocyte membrane by altering the K(+) permeability across the membrane. It is concluded that the transport of biotin and pantothenate mediated by rat SMVT is electrogenic with a Na(+):substrate coupling ratio of 2:1 and that the transport process is associated with the transfer of one net positive charge across the membrane per transport cycle.  相似文献   

2.
It has been well established that human intestinal and liver epithelial cells transport biotin via an Na+-dependent carrier-mediated mechanism. The sodium-dependent multivitamin transport (SMVT), a biotin transporter, is expressed in both cell types. However, the relative contribution of SMVT toward total carrier-mediated uptake of physiological (nanomolar) concentrations of biotin by these cells is not clear. Addressing this issue is important, especially in light of the recent identification of a second human high-affinity biotin uptake mechanism that operates at the nanomolar range. Hence, we employed a physiological approach of characterizing biotin uptake by human-derived intestinal Caco-2 and HepG2 cells at the nanomolar concentration range. We also employed a molecular biology approach of selectively silencing the endogenous SMVT of these cells with specific small interfering RNAs (siRNAs), then examining carrier-mediated biotin uptake. The results showed that in both Caco-2 and HepG2 cells, the initial rate of biotin uptake as a function of concentration over the range of 0.1 to 50 nM to be linear. Furthermore, we found that the addition of 100 nM unlabeled biotin, desthiobiotin, or pantothenic acid to the incubation medium had no effect on the uptake of 2.6 nM [3H]biotin. Pretreatment of Caco-2 and HepG2 cells with SMVT specific siRNAs substantially reduced SMVT mRNA and protein levels. In addition, carrier-mediated [3H]biotin (2.6 nM) uptake by Caco-2 and HepG2 cells was severely (P 0.01) inhibited by the siRNAs pretreatment. These results demonstrate that the recently described human high-affinity biotin uptake system is not functional in intestinal and liver epithelial cells. In addition, the results provide strong evidence that SMVT is the major (if not the only) biotin uptake system that operates in these cells.  相似文献   

3.
Membrane transport pathways for transplacental transfer of the water-soluble vitamin pantothenate were investigated by assessing the possible presence of a Na(+)-pantothenate cotransport mechanism in the maternal facing membrane of human placental epithelial cells. The presence of Na(+)-pantothenate cotransport was determined from radiolabeled tracer flux measurements of pantothenate uptake using preparations of purified brush-border membrane vesicles. Compared with other cations the imposition of an inward Na+ gradient stimulated vesicle uptake of pantothenate to levels approximately 40-fold greater than those observed at equilibrium. The observed stimulation of pantothenate uptake was not the result of indirect electrostatic coupling to an inside positive Na+ diffusion potential. In the absence of Na+ and pantothenate concentration gradients an inside negative voltage difference induced a Na(+)-dependent net influx of pantothenate, suggesting the presence of an electrogenic Na(+)-pantothenate cotransport mechanism. The effect of biotin on the kinetics of Na(+)-dependent pantothenate uptake and the effect of pantothenate on the kinetics of Na(+)-dependent biotin uptake suggested that placental absorption of biotin and pantothenate from the maternal circulation occurs by a common Na+ cotransport mechanism in apical brush-border membrane.  相似文献   

4.
5.
The sodium-dependent multivitamin transporter (SMVT) is essential for mediating and regulating biotin entry into mammalian cells. In cells, biotin is covalently linked to histones in a reaction catalyzed by holocarboxylase synthetase (HCS); biotinylation of lysine 12-biotinylated histone H4 (K12Bio H4) causes gene silencing. Here, we propose a novel role for HCS in sensing and regulating levels of biotin in eukaryotic cells. We hypothesized that nuclear translocation of HCS increases in response to biotin supplementation; HCS then biotinylates histone H4 at SMVT promoters, silencing biotin transporter genes. Jurkat lymphoma cells were cultured in media containing 0.025, 0.25, or 10 nmol/l biotin. The nuclear translocation of HCS correlated with biotin concentrations in media; the relative enrichment of both HCS and K12Bio H4 at SMVT promoter 1 (but not promoter 2) increased by 91% in cells cultured in medium containing 10 nmol/l biotin compared with 0.25 nmol/l biotin. This increase of K12Bio H4 at the SMVT promoter decreased SMVT expression by up to 86%. Biotin homeostasis by HCS-dependent chromatin remodeling at the SMVT promoter 1 locus was disrupted in HCS knockdown cells, as evidenced by abnormal chromatin structure (K12Bio H4 abundance) and increased SMVT expression. The findings from this study are consistent with the theory that HCS senses biotin, and that biotin regulates its own cellular uptake by participating in HCS-dependent chromatin remodeling events at the SMVT promoter 1 locus in Jurkat cells.  相似文献   

6.
The lip gene of Escherichia coli has been cloned and sequenced. Subcloning of a 3-kilobase EcoRI/EcoRV restriction fragment from Clark-Carbon plasmid pLC15-5 into pUC18 gives a plasmid that complements two lipoate auxotrophs, W1485-lip2 and JRG33-lip9, and which expresses a protein of approximately 36,000 Da. Sequencing suggests that lip codes for a protein of 281 amino acids (31,350 Da), showing sequence similarity to biotin synthase. It is thus likely that lip encodes a sulfur insertion enzyme analogous to biotin synthase and that the sulfur insertion chemistries of the two systems are related. Unidirectional nested deletion experiments show that both lipoate auxotrophs are complemented by the same 500-base pair region at the 3' terminus of the lip gene, indicating that the mutations affecting lipoate biosynthesis are located in this region of the protein. A small open reading frame located immediately downstream of the lip gene codes for a small protein of unknown function.  相似文献   

7.
The mechanism of pantothenate transport into rabbit renal brush-border membrane vesicles was studied. Under voltage-clamped conditions, an inward NaCl gradient induced the transient accumulation of pantothenate against its concentration gradient, indicating Na+/pantothenate cotransport. K+, Rb+, Li+, NH4+, and choline+ were ineffective in replacing Na+. Pantothenate analogs, D-glucose, and various carboxylic acids did not inhibit Na+-dependent pantothenate transport, suggesting that this system is specific for pantothenate. Kinetic analysis of the Na+-dependent pantothenate uptake revealed a single transport system which obeyed Michaelis-Menten kinetics (Km = 16 microM and Vmax = 6.7 pmol X mg-1 X 10 s-1). Imposition of an inside-negative membrane potential caused net uphill pantothenate accumulation in the presence of Na+ but absence of a Na+ gradient, indicating that Na+/pantothenate cotransport is electrogenic. The relationship between extravesicular Na+ concentration and pantothenate transport measured under voltage-clamped conditions was sigmoidal: a Hill coefficient (napp) of 2 and a [Na+]0.5 of 55 mM were calculated. It is suggested that an anionic pantothenate1- molecule is cotransported with two Na+ to give a net charge of +1. The coupling of pantothenate transport to the Na+ electrochemical gradient may provide an efficient mechanism for reabsorption of pantothenate in the kidney.  相似文献   

8.
9.
The water-soluble vitamin biotin is essential for normal cellular functions and its deficiency leads to a variety of clinical abnormalities. Mammals obtain biotin from exogenous sources via intestinal absorption, a process mediated by the sodium-dependent multivitamin transporter (SMVT). Chronic alcohol use in humans is associated with a significant reduction in plasma biotin levels, and animal studies have shown inhibition in intestinal biotin absorption by chronic alcohol feeding. Little, however, is known about the cellular and molecular mechanisms involved in the inhibition in intestinal biotin transport by chronic alcohol use. These mechanisms were investigated in this study by using rats and transgenic mice carrying the human full-length SLC5A6 5'-regulatory region chronically fed alcohol liquid diets; human intestinal epithelial Caco-2 cells chronically exposed to alcohol were also used as models. The results showed chronic alcohol feeding of rats to lead to a significant inhibition in carrier-mediated biotin transport events across jejunal brush border and basolateral membrane domains. This inhibition was associated with a significant reduction in level of expression of the SMVT protein, mRNA, and heterogenous nuclear RNA. Chronic alcohol feeding also inhibited carrier-mediated biotin uptake in rat colon. Studies with transgenic mice confirmed the above findings and further showed chronic alcohol feeding significantly inhibited the activity of SLC5A6 5'-regulatory region. Finally, chronic exposure of Caco-2 cells to alcohol led to a significant decrease in the activity of both promoters P1 and P2 of the human SLC5A6 gene. These studies identify for the first time the cellular and molecular parameters of the intestinal biotin absorptive processes that are affected by chronic alcohol feeding.  相似文献   

10.
The sodium-dependent multivitamin transporter (SMVT) plays an important role in biotin uptake in the intestine and other cell types. While significant knowledge has been gained with regard to regulation and cell biology of the SMVT system, there is little known about its structure-function relationships. Here we examined the role of each of the ten conserved (among species) cysteine residues in the function of the human SMVT (hSMVT) using site-directed mutagenesis. Our results showed a significant impairment in biotin uptake only in cells transfected with hSMVT mutated at Cys(294), but not at the other conserved cysteine residues; the impairment in biotin uptake caused by mutating Cys(294) was not related to the polar status of substituting amino acid. The inhibition in hSMVT function upon mutating Cys(294) was mediated via a significant reduction in the V(max), but not the apparent K(m), of the biotin uptake process, suggesting a decrease in the number (and/or activity) of hSMVT but not affinity. Biotinylation assay confirmed this suggestion by showing a marked reduction in the level of expression of the mutated protein at the cell membrane, without affecting total cellular level of induced hSMVT. These results show an important role for Cys(294) in the function and cell biology of hSMVT.  相似文献   

11.
12.
Membrane transport pathways for transplacental transfer of the water-soluble vitamin biotin were investigated by assessing the possible presence of a Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells. The presence of Na(+)-biotin cotransport was determined from radiolabeled tracer flux measurements of biotin uptake using preparations of purified brush-border membrane vesicles. The imposition of an inwardly directed Na+ gradient stimulated vesicle uptake of biotin to levels approximately 25-fold greater than those observed at equilibrium. The voltage sensitivity of Na+ gradient-driven biotin uptake suggested Na(+)-biotin cotransport is electrogenic occurring with net transfer of positive charge. A kinetic analysis of the activation of biotin uptake by increasing Na+ was most consistent with an interaction of Na+ at 2 sites in the transport protein. Static head determinations used to identify the magnitude of opposing driving forces bringing flux through the cotransport mechanism to equilibrium indicated a coupling ratio of 2 Na+ per biotin. Substrate specificity studies using chemical analogues of biotin suggested both the terminal carboxylic acid of the valeric acid side chain and a second nucleus of anionic charge were important determinants for substrate interaction with the cotransport protein. Initial rate determinations of biotin uptake indicate biotin interacts with a single saturable site (Km = 21 microM) with a maximal transport rate of 4.5 nmol/mg/min. The results of this study provide evidence for an electrogenic Na(+)-biotin cotransport mechanism in the maternal-facing membrane of human placental epithelial cells.  相似文献   

13.
14.
15.
The sodium-dependent multivitamin transporter (SMVT) plays an important role in biotin uptake in the intestine and other cell types. While significant knowledge has been gained with regard to regulation and cell biology of the SMVT system, there is little known about its structure-function relationships. Here we examined the role of each of the ten conserved (among species) cysteine residues in the function of the human SMVT (hSMVT) using site-directed mutagenesis. Our results showed a significant impairment in biotin uptake only in cells transfected with hSMVT mutated at Cys294, but not at the other conserved cysteine residues; the impairment in biotin uptake caused by mutating Cys294 was not related to the polar status of substituting amino acid. The inhibition in hSMVT function upon mutating Cys294 was mediated via a significant reduction in the Vmax, but not the apparent Km, of the biotin uptake process, suggesting a decrease in the number (and/or activity) of hSMVT but not affinity. Biotinylation assay confirmed this suggestion by showing a marked reduction in the level of expression of the mutated protein at the cell membrane, without affecting total cellular level of induced hSMVT. These results show an important role for Cys294 in the function and cell biology of hSMVT.  相似文献   

16.
Intestinal absorption of biotin is mediated via the sodium-dependent multivitamin transporter (SMVT). Studies from our laboratory and others have characterized different aspects of the human SMVT (hSMVT), but nothing is currently known about protein(s) that may interact with hSMVT and affect its physiology/biology. In this study, a PDZ-containing protein PDZD11 was identified as an interacting partner with hSMVT using yeast two-hybrid screen of a human intestinal cDNA library. The interaction between hSMVT and PDZD11 was confirmed by in vitro GST-pull-down assay and in vivo in a mammalian cell environment by a two-hybrid luciferase and coimmunoprecipitation assays. Furthermore, confocal imaging of live human intestinal epithelial HuTu-80 cells expressing hSMVT-GFP and DsRed-PDZD11 demonstrated colocalization of these two proteins. We also examined the functional consequence of the interaction between hSMVT and PDZD11 in HuTu-80 cells and observed significant induction in [(3)H]biotin uptake upon coexpression of hSMVT and PDZD11. In contrast, knocking down of PDZD11 with gene-specific small interfering RNA led to a significant decrease in biotin uptake; biotinylation assay showed this to be associated with a marked decrease in level of expression of hSMVT at the cell membrane. By truncation approach, we also demonstrated that the PDZ binding domain that is located in the COOH-terminal tail of hSMVT polypeptide is involved in the interaction with PDZD11. These results demonstrate for the first time that PDZD11 is an interacting partner with hSMVT in intestinal epithelial cells and that this interaction affects hSMVT function and cell biology.  相似文献   

17.
18.
The sodium-dependent multivitamin transporter (SMVT) is a major biotin transporter in a variety of tissues including the small intestine. The human SMVT (hSMVT) polypeptide is predicted to have four N-glycosylation sites and two putative PKC phosphorylation sites but their role in the function and regulation of the protein is not known and was examined in this investigation. Our results showed that the hSMVT protein is glycosylated and that this glycosylation is important for its function. Studies utilizing site-directed mutagenesis revealed that the N-glycosylation sites at positions Asn(138) and Asn(489) are important for the function of hSMVT and that mutating these sites significantly reduces the V(max) of the biotin uptake process. Mutating the putative PKC phosphorylation site Thr(286) of hSMVT led to a significant decrease in the PMA-induced inhibition in biotin uptake. The latter effect was not mediated via changes in the level of expression of the hSMVT protein and mRNA or in its level of expression at the cell membrane. These findings demonstrate that the hSMVT protein is glycosylated, and that glycosylation is important for its function. Furthermore, the study shows a role for the putative PKC-phosphorylation site Thr(286) of hSMVT in the PKC-mediated regulation of biotin uptake.  相似文献   

19.
Plasmodium falciparum lipoate protein ligase 1 (PfLipL1) is an ATP‐dependent ligase that belongs to the biotin/lipoate A/B protein ligase family (PFAM PF03099). PfLipL1 is the only known canonical lipoate ligase in Pf and functions as a redox switch between two lipoylation routes in the parasite mitochondrion. Here, we report the crystal structure of a deletion construct of PfLipL1 (PfLipL1Δ243‐279) bound to lipoate, and validate the lipoylation activity of this construct in both an in vitro lipoylation assay and a cell‐based lipoylation assay. This characterization represents the first step in understanding the redox dependence of the lipoylation mechanism in malaria parasites. Proteins 2017; 85:1777–1783. © 2017 Wiley Periodicals, Inc.  相似文献   

20.
Pantothenate permease, the product of the panF gene, catalyzes the sodium-dependent uptake of extracellular pantothenate. The panF gene was isolated from an Escherichia coli genomic DNA library and subcloned into multicopy plasmids. Increased copy number of the panF+ allele resulted in increased rates of pantothenate uptake and a significant increase in the steady-state intracellular pantothenate concentration. Despite the higher levels of pantothenate, the utilization of pantothenate for coenzyme A formation was not elevated, indicating that pantothenate kinase activity is the dominant regulator of coenzyme A biosynthesis. DNA sequencing of the panF gene revealed the presence of a single open reading frame that encoded a hydrophobic protein with a molecular weight of 51,992. Sequence analysis predicts that pantothenate permease is an integral membrane protein possessing 12 hydrophobic membrane-spanning domains connected by short hydrophilic sequences. The predicted topological profile of pantothenate permease is similar to that of other membrane carriers that catalyze cation-dependent symport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号