首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
One of the typical properties of the extracellular amylase produced by Bacillus caldolyticus is the tendency to disintegrate into subunits with a molecular weight (MW) of less than 10,000, when the enzyme is subjected to ultrafiltration. Disintegration is due to a loss of Ca-ions, leading to nonactive subunits. Activity can be fully restroed by addition of Ca-ions. Reactivation occurs also spontaneously if the low MW fraction is stored in glassware. Comparative ultrafiltration experiments with the subunit fraction with or without a supply of Ca revealed that in presence of this divalent cation the subunits reaggregated to the active enzyme. The different distribution patterns obtained in absence or presence of Ca showed that reactivation is directly linked to the formation of a high MW form of the protein. Substitution of Ca by other divalent cations also led to reaggregation. These aggregates are, however, inactive. The enzyme was found to be formed intracellularly in its low MW form. Experiments with protoplasts revealed that these are capable to produce and release the amylase. When the production of the enzyme by protoplasts declined, full restoration could be achieved by a recovery treatment. Normally, the enzyme released by the protoplasts consisted of equal portions of the high, medium, and low MW form of the amylase. If the cells were, however, depleted as a result of continued incubations, the extruded enzyme consisted increasingly of the low MW form, which could finally represent more than 80%. This trend could be completely reversed by the supply of carbon and nitrogen sources during the recovery treatment, whereafter the enzyme consisted again of the intially observed equal amounts of the three MW forms. Vesicles prepared from the protoplasts were also found to release amylase, but on a lower level, and only for a very limited time, with no possibility to regain activity by a recovery treatment. Subunit formation was also observed during column chromatography, which could be counteracted by a sufficient supply with Ca-ions.  相似文献   

3.
Controlling the concentration of dissolved oxygen is a standard feature in aerobic fermentation processes but the measurement of dissolved CO2 concentrations is often neglected in spite of its influence on the cellular metabolism. In this work room air and room air supplemented with 5% and 10% carbon dioxide were used for aeration during the cultivation of the thermophilic microorganism Bacillus caldolyticus (DSM 405) on starch to produce alpha-amylase (E.C. 3.2.1.1) and neutral protease (E.C. 3.4.24.27/28). The increased CO2 concentrations resulted in a 22% raise in activity of secreted alpha-amylase and a 43% raise in protease activity when compared with aeration with un-supplemented room air. There was no effect on the final biomass concentration. Furthermore, the lag-phase of fermentation was reduced by 30%, further increasing the productivity of alpha-amylase production. Determinations of dissolved CO2 in the culture broth were conducted both in situ with a probe as well as using exhaust gas analysis and both the methods of quantification showed good qualitative congruence.  相似文献   

4.
Summary Bacillus caldolyticus, grown at 70°C, produces a highly active extracellular amylase and protease. Both enzymes are formed either within the membrane, or at its inner surface. The activity of both extracellular enzymes was found to decline drastically when brain-heart infusion was omitted from the medium. A simultaneous increase of both enzymes inside the cell was observed. The shifting in extra- and intra-cellular activity was caused by changes in membrane composition due to the increase of anteiso-odd and n-even, and the decrease of iso-odd fatty acids. Membrane composition and enzymic activity could be influenced by the addition of either leucine or iso-leucine as precursors for the synthesis of branched-chain fatty acids: In presence of leucine the anteiso-odd and n-even fatty acids returned to their normal level, while the iso-odd fatty acids increased. Simultaneously the extracellular protease activity increased, and the intracellular activity declined. Growth in amylose-medium supplied with leucine lead to a decrease of both the intra- and extracellular amylase, and changes in the fatty acid composition of the membrane which could not be restored by transfer of the organism to complete media. Addition of iso-leucine first lead to a sharp decrease of extracellular protease and a drastic increase of intracellular protease activity, accompanied by an increase of anteiso-odd and n-even fatty acids, and a decrease of iso-odd compounds. After the second growth in presence of iso-leucine the intra- and extra-cellular protease activity was reversed, and thus showed a return to the starting situation. The reversal is accompanied by the preferential incorporation of fatty acids with a higher melting point into the membrane. Extracellular amylase activity was found to increase after the first growth with iso-leucine, and to decline sharply after the second culture with iso-leucine, together with a very high intracellular amylase activity at that point. Extra- and intra-cellular amylase activity both declined upon growth in complete medium, while the fatty acid distribution remained different from the initial composition.  相似文献   

5.
Controlling the concentration of dissolved oxygen is a standard feature in aerobic fermentation processes but the measurement of dissolved CO2 concentrations is often neglected in spite of its influence on the cellular metabolism. In this work room air and room air supplemented with 5 and 10% carbon dioxide were used for aeration during the cultivation of the thermophilic microorganism Bacillus caldolyticus (DSM 405) on starch to produce α-amylase (E.C. 3.2.1.1) and neutral protease (E.C. 3.4.24.27/28). The increased CO2 concentrations resulted in a 22% raise in activity of secreted α-amylase and a 43% raise in protease activity when compared with aeration with un-supplemented room air. There was no effect on the final biomass concentration. Furthermore, the lag-phase of fermentation was reduced by 30%, further increasing the productivity of α-amylase production. Determinations of dissolved CO2 in the culture broth were conducted both in situ with a probe as well as using exhaust gas analysis and both the methods of quantification showed good qualitative congruence.  相似文献   

6.
A strain of Bacillus produced an amylase with properties characteristically different from known bacterial amylases. The purified 80 kDa protein of pI 5.1 dextrinized starch, glycogen and pullulan. The temperature and pH optima of the enzyme were 60 °C and 6.6 respectively. In the presence of 0.05 M CaCl2, the enzyme retained stability for 15 min at 80 °C. Antibodies raised to the amylase protein showed no reaction with -amylases of Bacillus sp. and B. licheniformis. In culture, proteolytic degradation of the enzyme was observed.  相似文献   

7.
The purification and characterization of a new restriction endonuclease, BclI from the extreme thermophile Bacillus caldolyticus is reported. This enzyme recognizes the sequence : formula: (see text) and cleaves at the positions indicated by the arrows.  相似文献   

8.
9.
A new extracellular protease having a prospective application in the food industry was isolated from Bacillus sUbtilis NCIM 2711 by (NH4)2SO4 precipitation from the cell broth. It was purified using DEAE-Cellulose and CM-Sephadex C-50 ion-exchange chromatography. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 7.0 and temperature 55 degrees C with Km 1.06 mg/ml. The enzyme was stable over a pH range 6.5-8.0 at 30 degrees C for 1 hr in presence of CaCl2 x 2H2O. At 55 degrees C, the enzyme retained 60% activity up to 15 min in presence of CaCl2 x 2H2O. EDTA and o-phenanthroline (OP) completely inhibited the enzyme activity while DFP, PMSF and iodoacetamide were ineffective. The enzyme was completely inhibited by Hg2+ and partially by Cd2+, Cu2+, Ni2+, Pb2+ and Fe2+. The OP inhibited enzyme could be reactivated by Zn2+ and Co2+ up to 75% and 69% respectively. It is a neutral metalloprotease showing a single band of 43 kDa on SDS-PAGE.  相似文献   

10.
A membrane-bound enzyme activity from Bacillus acidocaldarius converted squalene to two pentacyclic triterpenes, hop-22(29)-ene and hopan-22-ol. The products were formed in a constant molar ratio of hopene:hopanol, 5:1, probably through parallel, and not successive, reactions. The conversion was independent of oxygen, in contrast to the biosynthesis of sterols from epoxysqualene in eukaryotes. The squalene-hopene cyclase was pufified 270-fold by extraction from B. acidocaldarius membranes at low concentrations of Triton X-100 followed by DEAE-cellulose chromatography. The enzyme showed optimal rates of squalene conversion at pH 6 and 60°C, corresponding to the intracellular pH and the optimal growth temperature of the bacterium. The apparent Km for squalene is 3 μM. Effective inhibitors of the enzyme were some sulfhydryl reagents and the histidyl reagent diethyl pyrocarbonate. The squalene-hopene cyclase, like several eukaryotic epoxysqualene cyclases, was strongly inhibited by AMO 1618 and by high ionic strength. On the basis of these and other similarities a phylogenitic relationship between the dey enzyme of steroid and hopanoid biosynthesis was envisaged.  相似文献   

11.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

12.
The production and purification of a calcium-dependent protease by Bacillus cereus BG1 were studied. The production of the protease was found to depend specifically on the calcium concentration in the culture medium. This suggests that this metal ion is essential for the induction of protease production and/or stabilisation of the enzyme after synthesis. The calcium requirement is highly specific since other metal ions (such as Mg2+ and Ba2+, which both activate the enzyme) are not able to induce protease production. The most appropriate medium for growth and protease production comprises (g L–1) starch 5, CaCl2 2, yeast extract 2, K2HPO4 0.2 and KH2PO4 0.2. The protease of BG1 strain was purified to homogeneity by ultrafiltration, heat treatment, gel filtration on Sephacryl S-200, ion exchange chromatography on DEAE-cellulose and, finally, a second gel filtration on Sephacryl S-200, with a 39-fold increase in specific activity and 23% recovery. The molecular weight was estimated to be 34 kDa on SDS-PAGE. The optimum temperature and pH of the purified enzyme were determined to be 60°C and 8.0, respectively, in 100 mM Tris-HCl buffer + 2 mM CaCl2.  相似文献   

13.
Aims:  To purify the biosurfactant produced by a marine Bacillus circulans strain and evaluate the improvement in surface and antimicrobial activities.
Methods and Results:  The study of biosurfactant production by B. circulans was carried out in glucose mineral salts (GMS) medium using high performance thin layer chromatography (HPTLC) for quantitative estimation. The biosurfactant production by this strain was found to be growth-associated showing maximum biosurfactant accumulation at 26 h of fermentation. The crude biosurfactants were purified using gel filtration chromatography with Sephadex® G-50 matrix. The purification attained by employing this technique was evident from UV–visible spectroscopy and TLC analysis of crude and purified biosurfactants. The purified biosurfactants showed an increase in surface activity and a decrease in critical micelle concentration values. The antimicrobial action of the biosurfactants was also enhanced after purification.
Conclusions:  The marine B. circulans used in this study produced biosurfactants in a growth-associated manner. High degree of purification could be obtained by using gel filtration chromatography. The purified biosurfactants showed enhanced surface and antimicrobial activities.
Significance and Impact of the Study:  The antimicrobial biosurfactant produced by B. circulans could be effectively purified using gel filtration and can serve as new potential drugs in antimicrobial chemotherapy.  相似文献   

14.
15.
By using a gene library of Bacillus caldolyticus constructed in phage lambda EMBL12 and selecting for proteolytically active phages on plates supplemented with 0.8% skim milk, chromosomal B. caldolyticus DNA fragments that specified proteolytic activity were obtained. Subcloning of one of these fragments in a protease-deficient Bacillus subtilis strain resulted in protease proficiency of the host. The nucleotide sequence of a 2-kb HinfI-MluI fragment contained an open reading frame (ORF) that specified a protein of 544 amino acids. This ORF was denoted as the B. caldolyticus npr gene, because the nucleotide and amino acid sequences of the ORF were highly similar to that of the Bacillus stearothermophilus npr gene. Additionally, the size, pH optimum, and sensitivity to the specific Npr inhibitor phosphoramidon of the secreted enzyme indicated that the B. caldolyticus enzyme was a neutral protease. The B. sterothermophilus and B. caldolyticus enzymes differed at only three amino acid positions. Nevertheless, the thermostability and optimum temperature of the B. caldolyticus enzyme were 7 to 8 degrees C higher than those of the B. stearothermophilus enzyme. In a three-dimensional model of the B. stearothermophilus Npr the three substitutions (Ala-4 to Thr, Thr-59 to Ala, and Thr-66 to Phe) were present at solvent-exposed positions. The role of these residues in thermostability was analyzed by using site-directed mutagenesis. It was shown that all three amino acid substitutions contributed to the observed difference in thermostability between the neutral proteases from B. stearothermophilus and B. caldolyticus.  相似文献   

16.
地衣芽孢杆菌胞外蛋白酶的纯化及特性分析   总被引:5,自引:0,他引:5  
研究不同条件对地衣芽孢杆菌De株产生胞外蛋白酶的量及其酶活性的影响,结果表明在pH为7.4—8.2范围内,温度为30℃时,培养8—12h的菌株所分泌胞外产物中的蛋白酶活性最高。实验先以半透膜法收集芽孢杆菌的胞外产物,然后再经过硫酸铵沉淀过夜S、ephadex G-100凝胶层析和DEAE-Cellulose离子交换层析及聚丙烯酰胺凝胶电泳等四个步骤的分离纯化后,可以得到含有3种主要蛋白质(BLP1、BLP2、BLP3)成分的胞外蛋白酶,其分子量分别为66.2KD、31.0KD及约20.1KD,所得纯化蛋白酶的蛋白浓度为0.773μg/mL,蛋白回收率为11.66%。实验还发现,纯化的胞外蛋白酶在100℃下作用30min,仍可保持其活力,可见具有相当的热稳定性,而其酶活最佳的pH和温度条件分别为7.8和45—65℃。酶活抑制实验显示EDTA、铜、钴、镁离子等均可成为其酶活抑制因子;而丝氨酸蛋白酶抑制剂甲基磺酰氟(PMSF)、铁、锰、钡、钙离子等对酶活性没有明显影响;锌则会令之酶活性其部分丧失。  相似文献   

17.
18.
Bacillus cereus KCTC 3674 excretes several kinds of extracellular proteases into the growth medium. Two proteases with molecular masses of approximately 36-kDa and 38-kDa, as shown by SDS-PAGE, were purified from the culture broth. The 38-kDa protease was purified from B. cereus cultivated at 37 degrees C, and the 36-kDa protease was obtained from the B. cereus cultivated at 20 degrees C. The 38-kDa protease was identified as an extracellular neutral (metallo-) protease and was further characterized. The 36-kDa protease was shown to be a novel enzyme based on its N-terminal amino acid sequence, its identification as a metallo-enzyme that was strongly inhibited by EDTA and o-phenanthroline, its hemolysis properties, and its optimal pH and temperature for activity of 8.0 and 70 degrees C, respectively.  相似文献   

19.
【背景】从独角莲中分离得到的地衣芽孢杆菌TG116是一株对植物病原菌具有广谱抗性作用的生防菌株。【目的】优化TG116的产酶条件并探索其酶学性质,进一步了解其抗菌机制。【方法】采用Folin-Phenol显色法与响应曲面法,优化菌株TG116的产酶条件并研究其蛋白酶的酶学性质。【结果】菌株TG116产酶最适条件为:温度40.83°C,p H 8.01,发酵时间53.74 h,增加通气量可以显著提高酶活力。按照优化后的条件培养48 h后,上清液蛋白酶活力从57.46 U/mL达到了254.07 U/mL。酶学性质研究表明:该酶为碱性蛋白酶,最适反应pH为8.5,最适反应温度为50°C,具有良好的温度和pH稳定性,EDTA对酶活具有强烈的抑制作用,金属离子Mg~(2+)、Ca~(2+)、Na~+、Co~(2+)、K~+等对酶活也具有一定的抑制作用。【结论】菌株TG116具有良好的p H与温度稳定性,在实际应用中蛋白酶不易失活,可以分解真菌的细胞壁蛋白成分,破坏细胞壁结构,从而抑制甚至杀死病原菌,达到抗菌作用。  相似文献   

20.
L Tran  X C Wu    S L Wong 《Journal of bacteriology》1991,173(20):6364-6372
We have cloned from Bacillus subtilis a novel protease gene (nprB) encoding a neutral protease by using a shotgun cloning approach. The gene product was determined to have a molecular mass of 60 kDa. It has a typical signal peptide-like sequence at the N-terminal region. The expression of nprB can be stimulated by using a B. subtilis strain, WB30, carrying a sacU(h)h mutation. Expression of this protease gene results in production of a 37-kDa protease in the culture medium. The first five amino acid residues from the N terminus of the mature protease were determined to be Ala-Ala-Gly-Thr-Gly. This indicates that the protease is synthesized in a preproenzyme form. The purified protease has a pH optimum of around 6.6, and its activity can be inhibited by EDTA, 1,10-phenanthroline (a zinc-specific chelator), and dithiothreitol. It retained 65% of its activity after treatment at 65 degrees C for 20 min. Sequence comparison indicates that the mature form of this protease has 66% homology with the two thermostable neutral proteases from B. thermoproteolyticus and B. stearothermophilus. It also shares 65, 61, and 56% homology with the thermolabile neutral proteases from B. cereus, B. amyloliquefaciens, and B. subtilis, respectively. The zinc-binding site and the catalytic residues are all conserved among these proteases. Sequence homology extends into the "propeptide" region. The nprB gene was mapped between metC and glyB and was not required for growth or sporulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号