首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The turnover rate of urinary Tamm-Horsfall glycoprotein in rabbits was determined by two different methods. The first involved measurement of the pool size of the glycoprotein in rabbit kidney and the daily urinary excretion rate by a radioimmunoassay from which the turnover rate was calculated. 2. The second method made use of the incorporation in vivo of Na(2) (14)CO(3) and sodium [(14)C]acetate. After a single intramuscular injection of one of these compounds, urine collections were made every 24h and the glycoprotein was isolated and its specific radioactivity was determined. 3. Incorporation of the label into urinary HCO(3) (-), urea and plasma fibrinogen was also examined. The specific radio-activities of the O-acetyl, sialic acid, aspartic acid and glutamic acid residues isolated from the Tamm-Horsfall glycoprotein were compared and their half-lives were compared with that of the intact glycoprotein. The two methods gave results in quite close agreement and indicated a half-life for the glycoprotein of approx. 9h. 4. An attempt was made to localize the glycoprotein within the kidney and within the cell. It is present throughout the kidney, but was not detected in the brush-border fraction isolated from the proximal tubules. From differential cell-centrifugation studies, the glycoprotein seemed to be predominantly present in the soluble fraction (100000g supernatant). This suggests that it is either largely a soluble cytoplasmic component or is very loosely bound to a membrane, being readily released under the gentlest homogenization procedure. 5. The half-life of Tamm-Horsfall glycoprotein in human kidney was found by the radioimmunoassay method to be approx. 16h. The similarity between the composition of Tamm-Horsfall glycoprotein and human erythropoietin is discussed.  相似文献   

2.
1. Subunit molecular weights of 76000-82000 were obtained for native and alkylated Tamm-Horsfall glycoprotein by gel filtration on Sephadex G-200 in the presence of sodium dodecyl sulphate. 2. A further estimate of the subunit molecular weight of 79000+/-4000 was obtained by disc gel electrophoresis in sodium dodecyl sulphate. 3. A minimum value of the chemical molecular weight of 79000+/-6000 was obtained from the number of N-terminal amino acids released by cyanogen bromide cleavage of the glycoprotein. 4. Similar values were obtained for the subunit molecular weight of Tamm-Horsfall glycoprotein from patients with cystic fibrosis. 5. On ultracentrifugation both in 1.0% sodium dodecyl sulphate and in 70% formic acid, Tamm-Horsfall glycoprotein sedimented as a single component, slightly faster than serum albumin. 6. On reduction of the disulphide bonds the same subunit molecular weight was obtained, which suggested that these bonds are intrachain.  相似文献   

3.
The Tamm–Horsfall glycoprotein prepared by salt precipitation from urine was found to comprise a heterogeneous collection of aggregates. These could be disaggregated with 8m-urea, following which chromatography on a column of Bio-Gel A.15m yielded a homogeneous glycoprotein of mol.wt. 73000 together with several unidentified impurities. Gel filtration of normal plasma showed the glycoprotein to exist predominantly in a form that is eluted identically with the purified preparation. In one case, material of higher molecular weight was also detected. The purified glycoprotein was used to develop a rapid specific radioimmunoassay for its measurement in human serum or plasma by the use of the Tamm–Horsfall glycoprotein, labelled with 125I by the chloramine-t method as the tracer, an antiserum raised in rabbits, and separation of the bound and free fractions by a second antibody covalently linked to magnetizable particles. Parallelism was demonstrated between the standard preparation and samples. Recovery of added standard to serum varied between 99 and 109%. Total assay time was less than 4h with an intra-assay and inter-assay coefficient of variation of less than 10%. There were no significant differences in the ranges covered with regard to either age or sex, and no circadian rhythm was observed in normal subjects. A physiological range of 70–540ng/ml was established based on serum samples from 95 subjects with normal renal function, as defined by their serum creatinine and urea concentrations. No Tamm–Horsfall glycoprotein was detected in the serum of six anephric patients.  相似文献   

4.
1. Tamm-Horsfall glycoprotein from rabbit urine has been isolated and characterized. The homogeneity of the preparation has been established by a variety of procedures including disc gel electrophoresis and ultracentrifugation in aqueous solution, sodium dodecyl sulphate and formic acid. 2. The chemical composition has been determined and a carbohydrate content of approx. 31% was obtained. The relative contents of the amino acids were shown to be very similar to those in human Tamm-Horsfall glycoprotein. A trace of lipid was also detected. 3. Leucine was identified as the only N-terminal amino acid. 4. The subunit structure was investigated in the presence of sodium dodecyl sulphate by gel filtration and disc gel electrophoresis. These studies indicated that the subunit possessed a molecular weight of approx. 84000+/-6000. A similar value was obtained after reduction and S-alkylation of the glycoprotein indicating that the disulphide bonds were all intrachain. 5. A minimum value for the chemical molecular weight of 85000+/-6000 was obtained from the number of N-terminal amino acids released by cyanogen bromide cleavage of the glycoprotein. 6. The immunological properties of the glycoprotein were studied. Cross reactivity was demonstrated between human Tamm-Horsfall glycoprotein and a guinea-pig anti-rabbit Tamm-Horsfall antiserum.  相似文献   

5.
1. Tamm-Horsfall glycoprotein was isolated from hamster urine and antiserum against it was produced in rabbits. Immunoglobulin G was isolated from the antiserum. 2. Indirect methods of immunofluorescence staining were applied to kidney sections previously fixed by both perfusion and immersion methods. Tamm-Horsfall glycoprotein was identified associated with only the cells of the ascending limb of the loop of Henle and the distal convoluted tubule. Maculae densae were free of the glycoprotein. 3. Indirect immunoperoxidase procedures with light microscopy were applied to kidney sections. The results extended those found by immunofluorescence by showing that the glycoprotein is largely associated with the plasma membrane of the cells. Macula densa cells were shown to be free of the glycoprotein, although the luminal surface of the remaining cells in the transverse section of the nephron at that region was shown to contain it. 4. A variety of immuno-electron-microscopic techniques were applied to sections previously fixed in a number of ways. Providing periodate/lysine/paraformaldehyde was used as the fixative, the glycoprotein was often seen to be present not only on the luminal surface of the cells of the thick ascending limb of the loop of Henle and of the distal convoluted tubule, but also on the basal plasma membrane, including the infoldings. 5. It is generally accepted that the hyperosmolarity in the medulla of the kidney results from passage of Cl(-) ions with their accompanying Na(+) ions across the single cell layer of the lumen of the thick ascending limb of the loop of Henle, a region of the nephron with relatively high impermeability to water. We suggest that Tamm-Horsfall glycoprotein operates as a barrier to decrease the passage of water molecules by trapping the latter at the membrane of the cells. Our hypothesis requires the glycoprotein on the basal plasma membrane also.  相似文献   

6.
Partial invitro sialylation of biantennary and triantennary glycopeptides of α1-acid glycoprotein using colostrum β-galactosideα(2→6) sialyltransferase followed by high resolution 1H-NMR spectroscopic analysis of the isolated products enabled the assignment of the Galβ(1→4)GlcNAcβ(1→2)Manα(1→3)Man branch as the most preferred substrate site for sialic acid attachment. The Galβ(1→4)GlcNAcβ(1→2)Manα(1→6)Man branch appeared to be much less preferred and the Galβ(1→4)GlcNAcβ(1→4)Manα(1→3)Man sequence of triantennary structures was of intermediate preference for the sialyltransferase. The specificity of the β-galactoside α(2→6) sialyltransferase is thus shown to extend to structural features beyond the terminal N-acetyllactosamine units on the oligosaccharide chains of serum glycoproteins.  相似文献   

7.
1. The chromogen formation from N-acetylneuraminic acid in the periodate-thiobarbituric acid reaction was investigated. Measurement of periodate consumption showed an uptake of approx. 3moles/mole of substrate in neutral as well as in strongly acidic solution. Therefore the chromogen beta-formylpyruvic acid is not a direct product of the periodate oxidation; it is presumed to be formed from the true oxidation product, a hexos-5-uluronic acid, by aldol splitting during the reaction in hot acidic solution with thiobarbituric acid. 2. Methyl (methyl beta-l-threo-hexos-4-enepyranosid)uronate, an analogue of the pre-chromogen, has been shown to yield with thiobarbituric acid in acidic solution a pigment exhibiting an identical absorption spectrum and showing the same behaviour on paper chromatography as the pigment obtained from N-acetylneuraminic acid in the periodate-thiobarbituric acid assay. 3. The substitution at C-2 of methoxyneuraminic acid does not inhibit the periodate-thiobarbituric acid reaction. In neutral solution methoxyneuraminic acid is oxidized by periodate to a substance that reacts readily with thiobarbituric acid in acidic solution. When periodate oxidation is attempted in acidic solution, protonation of the amino group protects this group against oxidation, rendering methoxyneuraminic acid negative in the assay systems of Warren (1959a,b) and Aminoff (1959, 1961).  相似文献   

8.
9.
Abstract

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in hyperoxaluric condition has been proved experimentally. This may result in the formation of the cytotoxic metabolite peroxynitrite, which is capable of causing lipid peroxidation and protein modification. The presence of nitrotyrosine in proteins has been associated with several pathological conditions. The present study investigated the presence of nitrotyrosine in the stone formers Tamm–Horsfall glycoprotein (THP). In vitro nitration of control THP was carried out using peroxynitrite. New Zealand white rabbits were immunized with peroxynitrated THP at 15-day intervals. Antisera collected following the third immunization were assayed for antibody titres using solid-phase ELISA. Antibodies were purified by affinity chromatography. The carbonyl content of control, stone formers and nitrated THP were determined. Western blotting was carried with control, stone formers and nitrated THPs. Immunodiffusion studies demonstrated cross-reaction with nitrated bovine serum albumin. Significant amounts (p<0.001) of carbonyl content were present in both stone formers and nitrated THPs. Western blot analysis confirmed the presence of nitrated amino acid 3-nitrotyrosine in stone formers, which could bring about structural and functional modifications of THP in hyperoxaluric patients. A cross-reaction with nitrated bovine serum albumin confirms that the raised antibody has certain paratopes similar to the epitope of nitrated protein molecules. Detection of 3-nitrotyrosine in stone formers THP indicates that it is one of the key factors influencing the conversion of THP to a structurally and immunologically altered form during calcium oxalate stone formation.  相似文献   

10.
1. The maltase and glucoamylase activities of acid alpha-glucosidase purified from rabbit muscle exhibited marked differences in certain physicochemical properties. These included pH stability, inactivation by thiol-group reagents, inhibition by alphaalpha-trehalose, methyl alpha-d-glucoside, sucrose, turanose, polyols, glucono-delta-lactone and monosaccharides, pH optimum and the kinetics and pH-dependence of cation activation. 2. The results are interpreted in terms of the existence of at least two specific substrate-binding sites or sub-sites. One site is specific for the binding of maltose and probably other oligosaccharides. The second site binds polysaccharides such as glycogen. 3. The sites appear to be in close proximity, since glycogen and maltose are mutually inhibitory substrates and interact directly in transglucosylation reactions. 4. Acid alpha-glucosidase exhibited intrinsic transglucosylase activity. The enzyme catalysed glucosyl-transfer reactions from [(14)C]maltose (donor substrate) to polysaccharides (glycogen and pullulan) and to maltose itself (disproportionation). The pH optimum was 5.1, with a shoulder or secondary activity peak at pH5.4. The glucose transferred to glycogen was attached by alpha-1,4- and alpha-1,6-linkages. Three major oligosaccharide products of enzyme action on maltose (disproportionation) were detected. 5. The kinetics of enzyme action on [(14)C]maltose showed that the rate of transglucosylation increased in a sigmoidal fashion as a function of substrate concentration, approximately in parallel with a decrease in the rate of glucose release. 6. The results are interpreted to imply competitive interaction at a specific binding site between maltose and water as glucosyl acceptors. 7. The results are discussed in terms of the possible existence of multiple subgroups of glycogen-storage disease type II.  相似文献   

11.
12.
1. The effects of acid mucopolysaccharides and acid mucopolysaccharide-proteins on the size and rate of formation of fibril aggregates from collagen solutions in pH7.6 buffers were studied by turbidimetric and light-scattering methods. 2. Serum albumin, orosomucoid, methylated cellulose, chondroitin sulphate A and chondroitin sulphate C of molecular weight less than 20000, and hyaluronate of molecular weight less than 40000 did not influence rates of fibril formation. Chondroitin sulphate A, chondroitin sulphate C and hyaluronate of high molecular weight retarded the rate of fibril formation. This effect of high-molecular-weight chondroitin sulphate C decreased with increasing ionic strength. Heparin, though of low molecular weight (13000), was highly effective, as was also heparitin sulphate. The chondroitin sulphate-proteins of very high molecular weight were highly effective, despite the fact that for some preparations the component chondroitin sulphate chains had molecular weights much less than 20000. 3. Agents that had delayed fibril formation were also effective in producing an increase in degree of aggregation of fibrillar collagen, as indicated by dissymmetry changes observed in light-scattering experiments at low collagen concentrations. Methylated cellulose and heparin at 2.5mug./ml. were unusual in decreasing aggregation, but heparin at 0.25mug./ml. increased aggregation. Electron microscopy of gels showed fibrils and fibril aggregates with ;normal' collagen spacing and dimensions consistent with the light-scattering results. 4. The rates of electrical transport of agents and of solvent (electro-osmosis) through collagen gels indicated a contribution of molecular entanglement that increased with increase in molecular size of the agents. Electrostatic binding of heparin to collagen was noted. Binding to collagen during fibril formation was also found for heparitin sulphate and a chondroitin sulphate with extra sulphate groups. 5. Electrostatic binding of acid mucopolysaccharide-proteins to collagen may be an important factor in the organization and functioning of connective tissues at all stages of growth and development. Excluded-volume (molecular-entanglement) effects may also be important. These factors operate simultaneously and interact mutually so that precise assessment of their relative importance is difficult.  相似文献   

13.
Some of the properties of sialic acid-free α1-acid glycoprotein prepared by mild acid hydrolysis (pH1·6 at 80° for 1hr.) were compared with those of neuraminidasetreated α1-acid glycoprotein. Chemically, the former contained less fucose (15%) and amide (2%) residues. Physicochemically, it had undergone certain changes primarily pertaining to the secondary structure, so that the specific optical rotation was more negative than that of the latter. A further expression of this change is probably the difference in the pH range of the resolution into two bands on electrophoresis. The resolution of the glycoprotein prepared by mild acid hydrolysis seems to be extended to more acidic pH values both by starch-gel and free moving-boundary electrophoresis. On ultracentrifugation both preparations appeared homogeneous and sedimented with a rate of 3s. Removal of sialyl residues at different pH values, in the range 1–7, showed that 2moles of sialic acid/mole of protein are very strongly bound. The two variants of α1-acid glycoprotein were isolated from pooled sialic acid-free α1-acid glycoprotein by preparative starch-gel electrophoresis and from selected blood of normal adults by fractionation by solubility and chromatography. Ultracentrifugal and starch-gel electrophoretic analyses at pH5, with incubation times of 1 or 24hr., demonstrated that no dissociation–association equilibrium (constant sedimentation coefficient and molecular weight) or isomerization (constant apparent electrophoretic mobilities) exist between the two variants. Therefore these variants are not sub-units of native α1-acid glycoprotein but represent modifications of naturally occurring proteins. Further, it was shown that the difference in the electrophoretic mobilities between the two variants was not due to any difference in amide content. Immunochemically, the two variants share the same determinants.  相似文献   

14.
The regulatory properties of maize phosphoenolpyruvate carboxylase were significantly altered by site-directed mutagenesis of residues 226 through 232. This conserved sequence element, RTDEIRR, is part of a surface loop at the dimer interface. Mutation of individual residues in this sequence caused various kinetic changes, including desensitization of the enzyme to key allosteric effectors or alteration of the K0.5 PEP for the substrate phosphoenolpyruvate. R231A, and especially R232Q, displayed decreased apparent affinity for the activator glucose-6-phosphate. Apparent affinity for the activator glycine was reduced in D228N and R232Q, while the maximum activation caused by glycine was greatly reduced in R226Q and E229A. R226Q and E229A also showed significantly lower sensitivity to the inhibitors malate and aspartate. E229A exhibited a low K0.5 PEP, while the K0.5 PEP of R232Q was significantly higher than that of wild type. Thus these seven residues are critical determinants of the enzyme’s kinetic responses to activators, inhibitors and substrate. The present results support an earlier suggestion that Arg 231 contributes to the binding site of the allosteric activator glucose-6-phosphate, and are consistent with other proposals that the substrate phosphoenolpyruvate allosterically activates the enzyme by binding at or near the glucose-6-phosphate site. The results also suggest that the glycine binding site may be contiguous with the glucose-6-phosphate binding site. Glu 229, which extends from this interface region through the interior of the protein and emerges near the aspartate binding site, may provide a physical link for propagating conformational changes between the allosteric activator and inhibitor binding regions.  相似文献   

15.
Cys116, Lys240*, and Asp241* (asterisks indicate residues from the second subunit of the active dimer) at the active site of L-methionine γ-lyase of Pseudomonas putida (MGL_Pp) are highly conserved among heterologous MGLs. In a previous study, we found that substitution of Cys116 for His led to a drastic increase in activity toward L-cysteine and a decrease in that toward L-methionine. In this study, we examined some properties of the C116H mutant by kinetic analysis and 3D structural analysis. We assumed that substitution of Cys116 for His broke the original hydrogen-bond network and that this induced a significant effect of Tyr114 as a general acid catalyst, possibly due to the narrow space in the active site. The C116H mutant acquired a novel β-elimination activity and lead a drastic conformation change in the histidine residue at position 116 by binding the substrate, suggesting that this His residue affects the reaction specificity of C116H. Furthermore, we suggest that Lys240* is important for substrate recognition and structural stability and that Asp241* is also involved in substrate specificity in the elimination reaction. Based on this, we suggest that the hydrogen-bond network among Cys116, Lys240*, and Asp241* contributes to substrate specificity that is, to L-methionine recognition at the active site in MGL_Pp.  相似文献   

16.
Rabbit erythrocytes contain a soluble aspartyl β-carboxyl methyltransferase capable of specifically carboxyl methylating the β-carboxyl group of an internal aspartyl residue in the synthetic polypeptide eledoisin, a hypotensively active peptide from the cephalopodsEledone moschata andE. aldrovandi, and tetragastrin, the biologically active C-terminal tetrapeptide of human gastrin. However, the aspartyl residue in delta sleep-inducing peptide (DSIP) could not be carboxyl methylated, nor could glutamyl residues in any polypeptide tested.  相似文献   

17.
 β-Galactosidases from Lactobacillus delbruekii subsp. bulgaricus 20056, Lb. casei 20094, Lactococcus lactis subsp. lactis 7962, Streptococcus thermophilus TS2, Pediococcus pentosaceus PE39 and Bifidobacterium bifidum 1901 were partially purified. The rate of hydrolysis of lactose given by the predominant β-galactosidase activity from each of the bacteria studied was in all cases enhanced by Mg2+, while the effect of K+ and Na+ differed from strain to strain. The β-galactosidases from all strains also catalysed transgalactosylation reactions. The types of oligosaccharides produced appeared to be very similar in each case, but the rates of their production differed. All the β-galactosidases were also capable of hydrolysing galactosyl-lactose although, unlike the other bacteria studied, Lb. delbruekii subsp. bulgaricus 20056 and Lc. lactis subsp. lactis 7962 were unable to utilise galactosyl-lactose as a carbon source for growth. Received: 4 October 1995/Received revision: 5 March 1996/Accepted 11 March 1996  相似文献   

18.
Sequences of the polynucleotide chains of RNA found in the large and small ribosomal subunits of rabbit reticulocytes have been determined from the 3'-end by use of periodate oxidation and condensation with [(3)H]isoniazid and by stepwise degradation. By these methods the hexanucleotide sequences have been found as -pGpUpUpUpGpU for the 28S RNA and -pGpUpCpGpCpU for the 6S RNA of the large ribosomal subunit and the octanucleotide sequence -pGpApUpCpApUpUpA for the 18S rRNA of the small ribosomal subunit. These sequences are present in at least 70% of all the RNA molecules and are discussed in relation to the specific cleavage of rRNA from its precursors and the role of multiple cistrons for rRNA in the DNA of higher organisms. The feasibility of using the method for longer sequence determinations is discussed.  相似文献   

19.
The primary structure of the main glycopeptide obtained by pronase digestion of horse pancreatic ribonuclease has been investigated by 360 MHz 1H-NMR spectroscopy and methylation analysis. The results demonstrate that this glycopeptide has the following structure:
This is the first time that the presence of both (2→3) and (2→6) linked sialic acid residues in a glycopeptide has been demonstrated.  相似文献   

20.
Enoyl-CoA hydratase catalyzes the hydration of 2-trans-enoyl-CoA into 3-hydroxyacyl-CoA. The present study focuses on the correlation between the functional and structural aspects of enoyl-CoA hydratase from Avicennia marina. We have used bioinformatics tools to construct and analyze 3D homology models of A. marina enoyl-CoA hydratase (AMECH) bound to different substrates and inhibitors and studied the residues involved in the ligand–enzyme interaction. Structural information obtained from the models was compared with those of the reported crystal structures. We observed that the overall folds were similar; however, AMECH showed few distinct structural changes which include structural variation in the mobile loop, formation and loss of certain interactions between the active site residues and substrates. Some changes were also observed within specific regions of the enzyme. Glu106 is almost completely conserved in sequences of the isomerases/hydratases including AMECH while Glu86 which is the other catalytic residue in most of the isomerases/hydratases is replaced by Gly and shows no interaction with the substrate. Asp114 is located within 4 Å distance of the catalytic water which makes it a probable candidate for the second catalytic residue in AMECH. Another prominent feature of AMECH is the presence of structurally distinct mobile loop having a completely different coordination with the hydrophobic binding pocket of acyl portion of the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号