首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Bruton's tyrosine kinase (Btk) is considered an essential signal transducer in B-cells. Mutational defects are associated with a severe immunodeficiency syndrome, X-chromosome linked agammaglobulinemia (XLA). Here we show by coimmunoprecipitation that a member of the protein kinase C (PKC) family, PKCmu, is constitutively associated with Btk. Neither antigen receptor (Ig) crosslinking nor stimulation of B-cells with phorbol ester or H(2)O(2) affected Btk/PKCmu interaction. GST precipitation analysis revealed association of the Btk pleckstrin/Tec homology domain with PKCmu. Transient overexpression of PKCmu deletion mutants as well as expression of selected PKCmu domains in 293T cells revealed that both the kinase domain and the regulatory C1 region are independently capable of binding to the Btk PH-TH domain. These data show the existence of a PKCmu/Btk complex in vivo and identify two PKCmu domains that participate in Btk interaction.  相似文献   

3.
Recent studies have documented direct interaction between 14-3-3 proteins and key molecules in signal transduction pathways like Ras, Cbl, and protein kinases. In T cells, the 14-3-3tau isoform has been shown to associate with protein kinase C theta and to negatively regulate interleukin-2 secretion. Here we present data that 14-3-3tau interacts with protein kinase C mu (PKCmu), a subtype that differs from other PKC members in structure and activation mechanisms. Specific interaction of PKCmu and 14-3-3tau can be shown in the T cell line Jurkat by immunocoprecipitiation and by pulldown assays of either endogenous or overexpressed proteins using PKCmu-specific antibodies and GST-14-3-3 fusion proteins, respectively. Using PKCmu deletion mutants, the 14-3-3tau binding region is mapped within the regulatory C1 domain. Binding of 14-3-3tau to PKCmu is significantly enhanced upon phorbol ester stimulation of PKCmu kinase activity in Jurkat cells and occurs via a Cbl-like serine containing consensus motif. However, 14-3-3tau is not a substrate of PKCmu. In contrast 14-3-3tau strongly down-regulates PKCmu kinase activity in vitro. Moreover, overexpression of 14-3-3tau significantly reduced phorbol ester induced activation of PKCmu kinase activity in intact cells. We therefore conclude that 14-3-3tau is a negative regulator of PKCmu in T cells.  相似文献   

4.
Protein kinase C (PKC) mu is a novel member of the PKC family that differs from the other isozymes in structural and biochemical properties. The precise function of PKCmu is not known. The present studies demonstrate that PKCmu is cleaved during apoptosis induced by 1-beta-d-arabinofuranosylcytosine (ara-C) and other genotoxic agents. PKCmu cleavage is blocked in cells that overexpress the anti-apoptotic Bcl-x(L) protein or the baculovirus p35 protein. Our results demonstrate that PKCmu is cleaved by caspase-3 at the CQND(378)S site. Cleavage of PKCmu is associated with release of the catalytic domain and activation of its kinase function. We also show that, unlike the cleaved fragments of PKCdelta and theta, overexpression of the PKCmu catalytic domain is not lethal. Cells stably expressing the catalytic fragment of PKCmu, however, are more sensitive to apoptosis induced by genotoxic stress. In addition, expression of the caspase-resistant PKCmu mutant partially inhibits DNA damage-induced apoptosis. These findings demonstrate that PKCmu is cleaved by caspase-3 and that expression of the catalytic domain sensitizes cells to the cytotoxic effects of ara-C and other anticancer agents.  相似文献   

5.
CKS-17, a synthetic peptide representing a unique amino acid motif which is highly conserved in retroviral transmembrane proteins and other immunoregulatory proteins, induces selective immunomodulatory functions, both in vitro and in vivo, and activates intracellular signaling molecules such as cAMP and extracellular signal-regulated kinases. In the present study, using Jurkat T-cells, we report that CKS-17 phosphorylates protein kinase D (PKD)/protein kinase C (PKC) mu. Total cell extracts from CKS-17-stimulated Jurkat cells were immunoblotted with an anti-phospho-PKCmu antibody. The results show that CKS-17 significantly phosphorylates PKD/PKCmu in a dose- and time-dependent manner. Treatment of cells with the PKC inhibitors GF 109203X and Ro 31-8220, which do not act directly on PKD/PKCmu, attenuates CKS-17-induced phosphorylation of PKD/PKCmu. In contrast, the selective protein kinase A inhibitor H-89 does not reverse the action of CKS-17. Furthermore, a phospholipase C (PLC) selective inhibitor, U-73122, completely blocks the phosphorylation of PKD/PKCmu by CKS-17 while a negative control U-73343 does not. In addition, substitution of lysine for arginine residues in the CKS-17 sequence completely abrogates the ability of CKS-17 to phosphorylate PKD/PKCmu. These results clearly indicate that CKS-17 phosphorylates PKD/PKCmu through a PLC- and PKC-dependent mechanism and that arginine residues play an essential role in this activity of CKS-17, presenting a novel modality of the retroviral peptide CKS-17 and molecular interaction of this compound with target cells.  相似文献   

6.
The capsaicin receptor VR1 is a polymodal nociceptor activated by multiple stimuli. It has been reported that protein kinase C plays a role in the sensitization of VR1. Protein kinase D/PKCmu is a member of the protein kinase D serine/threonine kinase family that exhibits structural, enzymological, and regulatory features distinct from those of the PKCs, with which they are related. As part of our effort to optimize conditions for evaluating VR1 pharmacology, we found that treatment of Chinese hamster ovary (CHO) cells heterologously expressing rat VR1 (CHO/rVR1) with butyrate enhanced rVR1 expression and activity. The expression of PKCmu and PKCbeta1, but not of other PKC isoforms, was also enhanced by butyrate treatment, suggesting the possibility that these two isoforms might contribute to the enhanced activity of rVR1. In support of this hypothesis, we found the following. 1) Overexpression of PKCmu enhanced the response of rVR1 to capsaicin and low pH, and expression of a dominant negative variant of PKCmu reduced the response of rVR1. 2) Reduction of endogenous PKCmu using antisense oligonucleotides decreased the response of exogenous rVR1 expressed in CHO cells as well as of endogenous rVR1 in dorsal root ganglion neurons. 3) PKCmu localized to the plasma membrane when overexpressed in CHO/rVR1 cells. 4) PKCmu directly bound to rVR1 expressed in CHO cells as well as to endogenous rVR1 in dorsal root ganglia or to an N-terminal fragment of rVR1, indicating a direct interaction between PKCmu and rVR1. 5) PKCmu directly phosphorylated rVR1 or a longer N-terminal fragment (amino acids 1-118) of rVR1 but not a shorter one (amino acids 1-99). 6) Mutation of S116A in rVR1 blocked both the phosphorylation of rVR1 by PKCmu and the enhancement by PKCmu of the rVR1 response to capsaicin. We conclude that PKCmu functions as a direct modulator of rVR1.  相似文献   

7.
8.
The Non-structural 1 (NS1) protein of avian influenza (AI) viruses is important for pathogenicity. Here, we identify a previously unrecognized tandem PDZ-ligand (TPL) domain in the extreme carboxy terminus of NS1 proteins from a subset of globally circulating AI viruses. By using protein arrays we have identified several human PDZ-cellular ligands of this novel domain, one of which is the RIL protein, a known regulator of the cellular tyrosine kinase Src. We found that the AI NS1 proteins bind and stimulate human Src tyrosine kinase, through their carboxy terminal Src homology type 3-binding (SHB) domain. The physical interaction between NS1 and Src and the ability of AI viruses to modulate the phosphorylation status of Src during the infection, were found to be influenced by the TPL arrangement. These results indicate the potential for novel host-pathogen interactions mediated by the TPL and SHB domains of AI NS1 protein.  相似文献   

9.
The mutant Chinese hamster ovary cell line (CHO), MT58, has a temperature-sensitive mutation in CTP:phosphocholine cytidylyltransferase (CT), preventing phosphatidylcholine (PC) synthesis at 40 degrees C which results in apoptosis. Previous studies (Houweling, M., Cui, Z., and Vance, D. E. (1995) J. Biol. Chem. 270, 16277-16282) showed that expression of wild-type CT-alpha rescued the cells at 40 degrees C, whereas expression of phosphatidylethanolamine N-methyltransferase-2 (PEMT2) did not, even though PC levels appeared to be maintained at wild-type levels after 24 h at the restrictive temperature. We report that the failure of PEMT2 to rescue the MT58 cell line is due to inadequate long term PC synthesis. We found that changing the medium every 24 h rescued the PEMT2-expressing MT58 cells grown at 40 degrees C. This was due to the uptake and utilization of lipids in the serum. At 40 degrees C, PC levels in the wild-type CHO cells and CT-expressing MT58 cells increased over time whereas PC levels did not change in both the MT58 and PEMT2-expressing MT58 cell lines. Further investigation found that both the PEMT2-expressing MT58 and MT58 cell lines accumulated triacylglycerol at 40 degrees C. Pulse-chase experiments indicated that lyso-PC accumulated to a higher degree at 40 degrees C in the PEMT2-expressing MT58 cells compared with CT-expressing MT58 cells. Transfection of the PEMT-expressing MT58 cells with additional PEMT2 cDNA partially rescued the growth of these cells at 40 degrees C. Inhibition of PC degradation, by inhibitors of phospholipases, also stimulated PEMT-expressing MT58 cell growth at 40 degrees C. Best results were observed using a calcium-independent phospholipase A(2) inhibitor, methyl arachidonyl fluorophosphonate. This inhibitor also increased PC mass in the PEMT2-expressing MT58 cells. When the cells are shifted to 40 degrees C, PC degradation by enzymes such as phospholipases is greater than PC synthesis in the mutant PEMT2-expressing MT58 cells. Taken together, these results indicate that PEMT2 expression fails to rescue the mutant cell line at 40 degrees C because it does not maintain PC levels required for cellular replication.  相似文献   

10.
On the cell surface, the 59-kDa membrane type 1-matrix metalloproteinase (MT1-MMP) activates the 72-kDa progelatinase A (MMP-2) after binding the tissue inhibitor of metalloproteinases (TIMP)-2. A 44-kDa remnant of MT1-MMP, with an N terminus at Gly(285), is also present on the cell after autolytic shedding of the catalytic domain from the hemopexin carboxyl (C) domain, but its role in gelatinase A activation is unknown. We investigated intermolecular interactions in the gelatinase A activation complex using recombinant proteins, domains, and peptides, yeast two-hybrid analysis, solid- and solution-phase assays, cell culture, and immunocytochemistry. A strong interaction between the TIMP-2 C domain (Glu(153)-Pro(221)) and the gelatinase A hemopexin C domain (Gly(446)-Cys(660)) was demonstrated by the yeast two-hybrid system. Epitope masking studies showed that the anionic TIMP-2 C tail lost immunoreactivity after binding, indicating that the tail was buried in the complex. Using recombinant MT1-MMP hemopexin C domain (Gly(285)-Cys(508)), no direct role for the 44-kDa form of MT1-MMP in cell surface activation of progelatinase A was found. Exogenous hemopexin C domain of gelatinase A, but not that of MT1-MMP, blocked the cleavage of the 68-kDa gelatinase A activation intermediate to the fully active 66-kDa enzyme by concanavalin A-stimulated cells. The MT1-MMP hemopexin C domain did not form homodimers nor did it bind the gelatinase A hemopexin C domain, the C tail of TIMP-2, or full-length TIMP-2. Hence, the ectodomain of the remnant 44-kDa form of MT1-MMP appears to play little if any role in the activation of gelatinase A favoring the hypothesis that it accumulates on the cell surface as an inactive, stable degradation product.  相似文献   

11.
12.
The yeast kinase Yck2 tethers to the cytoplasmic surface of the plasma membrane through dual palmitoylation of its C-terminal Cys-Cys dipeptide, mediated by the Golgi-localized palmitoyl-transferase Akr1. Here, the Yck2 palmitoylation signal is found to consist of three parts: 1) a 10-residue-long, conserved C-terminal peptide (CCTP) that includes the C-terminal Cys-Cys dipeptide; 2) the kinase catalytic domain (KD); and mapping between these two elements; and 3) a 176-residue-long, poorly conserved, glutamine-rich sequence. The CCTP, which contains the C-terminal cysteines as well as an important Phe-Phe dipeptide, likely serves as an Akr1 recognition element, because CCTP mutations disrupt palmitoylation within a purified in vitro palmitoylation system. The KD contribution appears to be complex with roles for both KD activity (e.g., Yck2-mediated phosphorylation) and structure (e.g., Akr1 recognition elements). KD and CCTP mutations are strongly synergistic, suggesting that, like the CCTP, the KD may also participate at the Yck2-Akr1 recognition step. The long, glutamine-rich domain, which is located between the KD and CCTP, is predicted to be intrinsically disordered and may function as a flexible, interdomain linker, allowing a coupled interaction of the KD and CCTP with Akr1. Multipart palmitoylation signals may prove to be a general feature of this large class of palmitoylation substrates. These soluble proteins have no clear means of accessing membranes and thus may require active capture out of the cytoplasm for palmitoylation by their membrane-localized transferases.  相似文献   

13.
Microtubule (MT) destabilization promotes the formation of actin stress fibers and enhances the contractility of cells; however, the mechanism involved in the coordinated regulation of MTs and the actin cytoskeleton is poorly understood. LIM kinase 1 (LIMK1) regulates actin polymerization by phosphorylating the actin depolymerization factor, cofilin. Here we report that LIMK1 is also involved in the MT destabilization. In endothelial cells endogenous LIMK1 co-localizes with MTs and forms a complex with tubulin via the PDZ domain. MT destabilization induced by thrombin or nocodazole resulted in a decrease of LIMK1 colocalization with MTs. Overexpression of wild type LIMK1 resulted in MT destabilization, whereas the kinase-dead mutant of LIMK1 (KD) did not affect MT stability. Importantly, down-regulation of endogenous LIMK1 by small interference RNA resulted in abrogation of the thrombin-induced MTs destabilization and the inhibition of thrombin-induced actin polymerization. Expression of Rho kinase 2, which phosphorylates and activates LIMK1, dramatically decreases the interaction of LIMK1 with tubulin but increases its interaction with actin. Interestingly, expression of KD-LIMK1 or small interference RNA-LIMK1 prevents thrombin-induced microtubule destabilization and F-actin formation, suggesting that LIMK1 activity is required for thrombin-induced modulation of microtubule destabilization and actin polymerization. Our findings indicate that LIMK1 may coordinate microtubules and actin cytoskeleton.  相似文献   

14.
Treatment of U937 cells with various apoptosis-inducing agents, such as TNFalpha and beta-D-arabinofuranosylcytosine (ara-C) alone or in combination with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), bryostatin 1 or cycloheximide, causes proteolytic cleavage of protein kinase Cmu (PKCmu) between the regulatory and catalytic domain, generating a 62 kDa catalytic fragment of the kinase. The formation of this fragment is effectively suppressed by the caspase-3 inhibitor Z-DEVD-FMK. In accordance with these in vivo data, treatment of recombinant PKCmu with caspase-3 in vitro results also in the generation of a 62 kDa fragment (p62). Treatment of several aspartic acid to alanine mutants of PKCmu with caspase-3 resulted in an unexpected finding. PKCmu is not cleaved at one of the typical cleavage sites containing the motif DXXD but at the atypical site CQND378/S379. The respective fragment (amino acids 379-912) was expressed in bacteria as a GST fusion protein (GST-p62) and partially purified. In contrast to the intact kinase, the fragment does not respond to the activating cofactors TPA and phosphatidylserine and is thus unable to phosphorylate substrates effectively.  相似文献   

15.
Suppression of invasive phenotype is essential in developing new therapeutic tools to treat prostate cancer (PC). Evidence indicates that androgen-dependent (AD) prostate cancer cells are characterized by a lower malignant phenotype. We have demonstrated that transfection with an androgen receptor (AR) expression vector of the androgen-independent (AI) prostate cancer cell line PC3 decreases invasion of these cells through modulation of alpha6beta4 integrin expression, indicating a genotropic effect of androgens in inhibiting invasion ability of AD PC cells. Later on, we have shown that also a non-genotropic mechanism is involved in such an effect. By using immunoconfocal fluorescent microscopy, we demonstrated that AR in PC3-AR cells co-localizes with the EGFR receptors (EGFR) in PC3-AR cells. Co-immunoprecipitation studies both in PC3-AR cells and in the AD cell line LNCaP that physiologically express both receptors, confirm the occurrence of an interaction between of the two proteins. In PC3-AR cells, we demonstrated a disruption of EGFR signalling properties (reduced EGF-induced EGFR autotransphosphorylation, reduced EGF-stimulated PI3K activity as well as EGFR-PI3K interaction) contributing to the lower invasive phenotype of these cells. In another study, we investigated the effects of a new Vitamin D analogue, BXL628, on invasion in response to KGF in the androgen-independent PC cell line DU145. We found that the compound was able to reduce proliferation and invasion of the cells in response to the growth factor. In addition, we found that KGF-induced autotransphosphorylation of KGF receptor (KGFR) and PI3K activation were suppressed after short-term (5min) pre-treatment with the analogue before addition of KGF. Collectively, these studies demonstrate that a non-genotropic effect due to a direct interaction of the androgen receptor with EGFR and to a rapid effect of a Vitamin D agonist on KGFR may disrupt signalling of GF leading to decreased tumorigenicity and a less malignant phenotype of PC cells in vitro.  相似文献   

16.
CHRK1, a chitinase-related receptor-like kinase in tobacco   总被引:1,自引:0,他引:1  
Kim YS  Lee JH  Yoon GM  Cho HS  Park SW  Suh MC  Choi D  Ha HJ  Liu JR  Pai HS 《Plant physiology》2000,123(3):905-915
A cDNA encoding a chitinase-related receptor-like kinase, designated CHRK1, was isolated from tobacco (Nicotiana tabacum). The C-terminal kinase domain (KD) of CHRK1 contained all of the conserved amino acids of serine/threonine protein kinases. The putative extracellular domain was closely related to the class V chitinase of tobacco and to microbial chitinases. CHRK1 mRNA accumulation was strongly stimulated by infection with fungal pathogen and tobacco mosaic virus. Amino acid-sequence analysis revealed that the chitinase-like domain of CHRK1 lacked the essential glutamic acid residue required for chitinase activity. The recombinant chitinase-like domain did not show any catalytic activity for either oligomeric or polymeric chitin substrates. The recombinant KD of CHRK1 exhibited autophosphorylation, but the mutant KD with a mutation in the essential ATP-binding site did not, suggesting that CHRK1 encoded a functional kinase. CHRK1 was detected in membrane fractions of tobacco BY2 cells. Furthermore, CHRK1-GFP fusion protein was localized in plasma membranes when it was expressed in animal cells. This is the first report of a new type of receptor-like kinase containing a chitinase-like sequence in the putative extracellular domain.  相似文献   

17.
Calcium-dependent protein kinases (CDPKs) play important roles in the life cycle of Plasmodium falciparum and other apicomplexan parasites. CDPKs commonly have an N-terminal kinase domain (KD) and a C-terminal calmodulin-like domain (CamLD) with calcium-binding EF hands. The KD and CamLD are separated by a junction domain (JD). Previous studies on Plasmodium and Toxoplasma CDPKs suggest a role for the JD and CamLD in the regulation of kinase activity. Here, we provide direct evidence for the binding of the CamLD with the P3 region (Leu356 to Thr370) of the JD in the presence of calcium (Ca2+). Moreover, site-directed mutagenesis of conserved hydrophobic residues in the JD (F363A/I364A, L356A, and F350A) abrogates functional activity of PfCDPK1, demonstrating the importance of these residues in PfCDPK1 function. Modeling studies suggest that these residues play a role in interaction of the CamLD with the JD. The P3 peptide, which specifically inhibits the functional activity of PfCDPK1, blocks microneme discharge and erythrocyte invasion by P. falciparum merozoites. Purfalcamine, a previously identified specific inhibitor of PfCDPK1, also inhibits microneme discharge and erythrocyte invasion, confirming a role for PfCDPK1 in this process. These studies validate PfCDPK1 as a target for drug development and demonstrate that interfering with its mechanistic regulation may provide a novel approach to design-specific PfCDPK1 inhibitors that limit blood stage parasite growth and clear malaria parasite infections.  相似文献   

18.
The microtubule (MT)-associated DCX protein plays an essential role in the development of the mammalian cerebral cortex. We report on the identification of a protein kinase, doublecortin kinase-2 (DCK2), with a domain (DC) highly homologous to DCX. DCK2 has MT binding activity associated with its DC domain and protein kinase activity mediated by a kinase domain, organized in a structure in which the two domains are functionally independent. Overexpression of DCK2 stabilizes the MT cytoskeleton against cold-induced depolymerization. Autophosphorylation of DCK2 strongly reduces its affinity for MTs. DCK2 and DCX mRNAs are nervous system-specific and are expressed during the period of cerebrocortical lamination. DCX is down-regulated postnatally, whereas DCK2 persists in abundance into adulthood, suggesting that the DC sequence has previously unrecognized functions in the mature nervous system. In sympathetic neurons, DCK2 is localized to the cell body and to the terminal segments of axons and dendrites. DCK2 may represent a phosphorylation-dependent switch for the reversible control of MT dynamics in the vicinity of neuronal growth cones.  相似文献   

19.
The ability of high pressure to dissociate several peripheral protein-membrane complexes was investigated. Three vitamin K-dependent proteins (factor X, protein Z, and prothrombin) dissociated from small unilamellar vesicles (SUVs, 30 nm diameter) composed of 25% phosphatidylserine (PS) and 75% phosphatidylcholine (PC) at comparable pressures (midpoints of 0.3-0.6 kbar). The pressure-induced dissociation curves for the factor X-SUV interaction followed the expected behavior for an interaction with an apparent dissociation equilibrium constant at atmospheric pressure, KD(atm), of 9 x 10(-7) M and a change in volume of association, delta Va, of 88 mL/mol. Factor X also dissociated from large unilamellar vesicles (LUVs, 100 nm diameter, 25% PS:75% PC) with a midpoint of 0.5 kbar. A second group of calcium-dependent membrane-binding proteins included protein kinase C (PKC), a 64-kDa protein, and a 32-kDa protein. The 32-kDa protein dissociated from SUVs (midpoint of 0.8 kbar), whereas PKC and the 64-kDa protein did not dissociate to a significant degree. The differences in dissociability of these proteins appeared to be a result of the differences in their KD(atm)'s (decreased dissociability with decreased KD(atm)). This pattern was further demonstrated by the relatively high midpoint of dissociation (1.1-1.4 kbar) of serum amyloid P component (SAP; KD(atm) ca. 10(-11)) and the limited dissociation of factor Va light chain (KD(atm) ca. 10(-11)). Changing the vesicle composition to phosphatidylethanolamine in place of PC gave higher affinity and decreased dissociation of the 32-kDa protein and SAP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Proteolysis of extracellular matrix proteins by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor and endothelial cell migration. In addition to its proteolytic activity, several studies indicate that the proinvasive properties of MT1-MMP also involve its short cytoplasmic domain, but the specific mechanisms mediating this function have yet to be fully elucidated. Having previously shown that the serum factor sphingosine 1-phosphate stimulates MT1-MMP promigratory function through a process that involves its cytoplasmic domain, we now extend these findings to show that this cooperative interaction is permissive to cellular migration through MT1-MMP-dependent transactivation of the epidermal growth factor receptor (EGFR). In the presence of sphingosine 1-phosphate, MT1-MMP stimulates EGFR transactivation through a process that is dependent upon the cytoplasmic domain of the enzyme but not its catalytic activity. The MT1-MMP-induced EGFR transactivation also involves G(i) protein signaling and Src activities and leads to enhanced cellular migration through downstream extracellular signal-regulated kinase activation. The present study, thus, elucidates a novel role of MT1-MMP in signaling events mediating EGFR transactivation and provides the first evidence of a crucial role of this receptor activity in MT1-MMP promigratory function. Taken together, our results suggest that the inhibition of EGFR may represent a novel target to inhibit MT1-MMP-dependent processes associated with tumor cell invasion and angiogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号