首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As established with the use of electron-immunochemical techniques, glycoprotein antigen 6 is the outer membrane component of P. pseudomallei cell wall, while glycoprotein antigen 8 is localized on the cell surface as a capsule-like formation. Antigen 6 plays no perceptible role in the realization of the pathogenic properties of the infective agent, but serves as a reliable sign in the differentiation of P. pseudomallei strains into serovars. Subcultures, defective in the synthesis of antigen 8, have sharply reduced virulence for laboratory animals. As revealed in this study, the pathogenetic action of antigen 8 is linked with its pronounced antiphagocytic function. Thus, antigen 8 is considered to be one of the key pathogenicity factors of P. pseudomallei.  相似文献   

2.
Burkholderia pseudomallei, the etiological agent of melioidosis, is an animal pathogen capable of inducing a highly fatal septicemia. B. pseudomallei possesses three type III secretion system (TTSS) clusters, two of which (TTSS1 and TTSS2) are homologous to the TTSS of the plant pathogen Ralstonia solanacearum, and one (TTSS3) is homologous to the Salmonella SPI-1 mammalian pathogenicity island. We have demonstrated that TTSS3 is required for the full virulence of B. pseudomallei in a hamster model of infection. We have also examined the virulence of B. pseudomallei mutants deficient in several putative TTSS3 effector molecules, and found no significant attenuation of B. pseudomallei virulence in the hamster model.  相似文献   

3.
4.
A review of literature on the pathogenicity factors of non-cholera vibrios and Aeromonas is presented. A detailed analysis of such pathogenicity factors as hemolysins, lecithinases, cytotoxins, adhesins, etc. is given. Information on some mechanisms of the pathogenetic action of these factors on warm-blooded animals is presented. The necessity of more extensive research on pathogenicity and persistence factors in opportunistic bacteria causing sapronotic infections is emphasized.  相似文献   

5.
Melioidosis is a disease caused by infection with Burkholderia pseudomallei. The molecular basis for the pathogenicity of B. pseudomallei is poorly understood. However, recent work has identified the first toxin from this bacterium and shown that it inhibits host protein synthesis. Here, we review the illness that is potentially associated with biological warfare, the pathogen and its deadly molecular mechanism of action, as well as therapeutic developments that may follow.  相似文献   

6.
Burkholderia pseudomallei and Burkholderia mallei are causative agents of distinct diseases, namely, melioidosis and glanders, respectively. The two species are very closely related, based on DNA-DNA homology, base sequence of the 16S rRNA, and phenotypic characteristics. Based on the use of polyclonal antisera, B. pseudomallei and B. mallei are also found to be antigenically closely related to one another. We previously reported the production of monoclonal antibodies (MAbs) against B. pseudomallei antigens; one group was specific for the 200-kDa exopolysaccharide present on the surface of all B. pseudomallei isolates, and the other was specific for the lipopolysaccharide (LPS) structure present on more than 95% of the B. pseudomallei tested. In the present study, we showed that the MAbs against 200-kDa antigen of B. pseudomallei cross-reacted with a component present also in some B. mallei isolates (3/6), but the positive immunoblot reaction was noted below the 200-kDa position. On the other hand, none of the six B. mallei isolates reacted with the MAb specific for B. pseudomallei LPS. It was of interest to observe that only the 3 exopolysaccharide-positive B. mallei isolates reacted with a commercial MAb against B. mallei LPS. The data presented suggest that B. mallei can be classified antigenically into two types based on their reactivities with different MAbs, i.e., the presence or absence of exopolysaccharide and the types of lipopolysaccharide. The heterogeneity of the LPS from these two closely related organisms is most likely related to the differences in its O-polysaccharide side chain.  相似文献   

7.
The growth and death of Pseudomonas pseudomallei, the causative agent of melioidosis, in the soil and the antigenic properties of this microorganism in the soil, in culture media, and in the body of animals have been studied. As revealed in this study, P. pseudomallei can grow in nonsterile soil substrates without the loss of virulence and changes in its antigenic structure. In the body of animals this microorganism rapidly adapts its virulence to host species by the transformation of its antigenic structure. The pathogenicity factors of P. pseudomallei are mainly thermolabile antigens, probably exoenzymes. This microorganism has been shown to have close ecological relations with abiotic environmental objects. The author suggests that the type of relationship between saprophytic microorganisms acting as causative agents of diseases and warm-blooded hosts should be characterized as pseudoparasitic.  相似文献   

8.
Proteus bacilli play a particularly important role in urinary tract infections (UTI). Fimbriae and adherence ability and hemolysins production (HpmA, HlyA) are one of the factors of pathogenicity of these bacteria. In this paper we describe the invasion of HCV T-29 transitional bladder urothelial cells carcinoma strains of P. penneri, as well as P. vulgaris strains belonging to different serogroups. The cytotoxic effect was observed at 8 hour of incubation of the tested cells with P. vulgaris O21 and the same effect (complete lysis) at 6 hours by P. vulgaris O4 (this strain manifests maximal activity in the production of HlyA hemolysin). P. penneri strains, produce different types of fimbriae, expressed similar bacterial invasiveness. The hydrophobic properties of 25 P. vulgaris strains were also tested and only 3 strains occur to have hydrophobic cell surface.  相似文献   

9.
Burkholderia pseudomallei induces the formation of multinucleated giant cells in cell monolayers. After infection of human macrophage-like U937 cells with B. pseudomallei, addition of monoclonal antibodies against integrin-associated protein (CD47), E-selectin (CD62E), a fusion regulatory protein (CD98), and E-cadherin (CD324) suppressed multinucleated giant cells in a concentration-dependent manner while monoclonal antibodies against other surface molecules did not inhibit fusion despite binding to the cell surface. Flow cytometric analysis showed increased expression of CD47 and CD98, but not CD62E and CD324, upon B. pseudomallei infection. Our data suggest the involvement of specific cellular factors in the process of B. pseudomallei-induced fusion.  相似文献   

10.
The data of pathogenicity factors of opportunistic enterobacteria, including Klebsiella, Enterobacter, Citrobacter, Proteus, Providencia and Hafnia species are submitted. The genetic control and a role of pathogenicity factors of opportunistic enterobacteria in development of diarrhea syndrome are presented. Data about adhesins, hemolysins, cytotoxic necrotizing factors and bacterial modulins are described. The characteristic of cytotonic and cytotoxic enterotoxins, including LT, ST, Shiga-like and cytolethal toxins, and mechanisms of diarrheagenic action are analysed. The role of bacterial lipopolysaccharide (endotoxin) and induction of locally synthesized proinflammatory cytokins in pathogenisis of diarrhea are discussed.  相似文献   

11.
Inflammation patterns induced by different Burkholderia species in mice   总被引:1,自引:0,他引:1  
Burkholderia pseudomallei , which causes melioidosis, a severe, mainly pulmonary disease endemic in South-East Asia, is considered to be the most pathogenic of the Burkholderia genus. B. thailandensis , however, is considered avirulent. We determined differences in patterns of inflammation of B. pseudomallei 1026b (clinical virulent isolate), B. pseudomallei AJ1D8 (an in vitro invasion-deficient mutant generated from strain 1026b by Tn5-OT182 mutagenesis) and B. thailandensis by intranasally inoculating C57BL/6 mice with each strain. Mice infected with B. thailandensis showed a markedly decreased bacterial outgrowth from lungs, spleen and blood 24 h after inoculation, compared with infection with B. pseudomallei and the invasion mutant AJ1D8. Forty-eight hours after inoculation, B. thailandensis was no longer detectable. This was consistent with elevated pulmonary cytokine and chemokine concentrations after infection with B. pseudomallei 1026b and AJ1D8, and the absence of these mediators 48 h, but not 24 h, after inoculation with B. thailandensis . Histological examination, however, did show marked pulmonary inflammation in the mice infected with B. thailandensis , corresponding with substantial granulocyte influx and raised myeloperoxidase levels. Survival experiments showed that infection with 1 × 103 cfu B. thailandensis was not lethal, whereas inoculation with 1 × 106 cfu B. thailandensis was equally lethal as 1 × 103 cfu B. pseudomallei 1026b or AJ1D8. These data show that B . pseudomallei AJ1D8 is just as lethal as wild-type B. pseudomallei in an in vivo mouse model, and B. thailandensis is perhaps more virulent than is often recognized.  相似文献   

12.
Burkholderia pseudomallei Ara- in rice fields was detected using PCR-based techniques with 16S RNA and flagella gene primer sets. The sensitivity of these PCRs was at least 1 CFU/mL of B. pseudomallei Ara- preincubated into Ashdown's medium for 6 h. B. pseudomallei Ara- DNA from watery soil were more detectable than from dry soil. The distribution of this DNA was mainly found at a depth of 300-600 mm under crop-covered fields, but not detected in the location of soil close to the land surface. The results suggest that PCR based on 16S RNA and flagella gene primer sets can be applied to investigate the presence of B. pseudomallei Ara- in contaminated soil of rice fields.  相似文献   

13.
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by these bacteria date back over 100 years, relatively little is known about their virulence and pathogenicity mechanisms. We used in silico genomic subtraction to generate their virulome, a set of 650 putative virulence-related genes shared by B. pseudomallei and B. mallei but not present in five closely related nonpathogenic Burkholderia species. Although most of these genes are clustered in putative operons, the number of targets for mutant construction and verification of reduced virulence in animal models is formidable. Therefore, Galleria mellonella (wax moth) larvae were evaluated as a surrogate host; we found that B. pseudomallei and B. mallei, but not other phylogenetically related bacteria, were highly pathogenic for this insect. More importantly, four previously characterized B. mallei mutants with reduced virulence in hamsters or mice had similarly reduced virulence in G. mellonella larvae. Site-specific inactivation of selected genes in the computationally derived virulome identified three new potential virulence genes, each of which was required for rapid and efficient killing of larvae. Thus, this approach may provide a means to quickly identify high-probability virulence genes in B. pseudomallei, B. mallei, and other pathogens.  相似文献   

14.
A subtraction library of Burkholderia pseudomallei was constructed by subtractive hybridisation of B. pseudomallei genomic DNA with Burkholderia thailandensis genomic DNA. Two clones were found to have significant sequence similarity to insertion sequences which have previously not been found in B. pseudomallei (designated ISA and ISB); and two clones showed sequence similarity to different regions of Burkholderia cepacia IS407 that has recently been detected in B. pseudomallei. The former, though possibly non-functional, represents new transposable genetic elements of B. pseudomallei. All three sequences were found to be present in multi-copy in the genomes of a number of B. pseudomallei strains and in B. thailandensis, which are the first transposable elements identified in this species.  相似文献   

15.
We investigated a non-mammalian host model system for fitness in genetic screening for virulence-attenuating mutations in the potential biowarfare agents Burkholderia pseudomallei and Burkholderia mallei . We determined that B. pseudomallei is able to cause 'disease-like' symptoms and kill the nematode Caenorhabditis elegans . Analysis of killing in the surrogate disease model with B. pseudomallei mutants indicated that killing did not require lipopolysaccharide (LPS) O-antigen, aminoglycoside/macrolide efflux pumping, type II pathway-secreted exoenzymes or motility. Burkholderia thailandensis and some strains of Burkholderia cepacia also killed nematodes. Manipulation of the nematode host genotype suggests that the neuromuscular intoxication caused by both B. pseudomallei and B. thailandensis acts in part through a disruption of normal Ca2+ signal transduction. Both species produce a UV-sensitive, gamma-irradiation-resistant, limited diffusion, paralytic agent as part of their nematode pathogenic mechanism. The results of this investigation suggest that killing by B. pseudomallei is an active process in C. elegans , and that the C. elegans model might be useful for the identification of vertebrate animal virulence factors in B. pseudomallei .  相似文献   

16.
Pathogenic Bacillus cereus can be routinely isolated and identified in the laboratory from foods and other sources. Typing of B. cereus strains implicated in food poisoning outbreaks is helpful for confirmation of the origin of the outbreak and for epidemiological studies. Data concerning vegetative growth and spores are given. Different types of toxin are produced by B. cereus in the course of its growth: a so-called diarrheal enterotoxin and an emetic heat-stable toxin; their biochemical characteristics and the systems used for their detection are reviewed. Different types of hemolysins and phospholipases C are also produced and may play a role in pathogenicity. Nongastrointestinal infections were also traced to this species.  相似文献   

17.
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis.  相似文献   

18.
Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.  相似文献   

19.
We reported previously two biochemically and antigenically distinct biotypes of Burkholderia pseudomallei. These two distinct biotypes could be distinguished by their ability to assimilate L-arabinose. Some B. pseudomallei isolated from soil samples could utilize this substrate (Ara+), whereas the other soil isolates and all clinical isolates could not (Ara-). Only the Ara isolates were virulent in animals and reacted with monoclonal antibody directed at the surface envelope, most likely the exopolysaccharide component. In the present study, pulsed-field gel electrophoresis was employed for karyotyping of these previously identified B. pseudomallei strains. We demonstrate here that the DNA macrorestriction pattern allows the differentiation between B. pseudomallei, which can assimilate L-arabinose, and the proposed B. thailandensis, which cannot do so. Bacterial strains from 80 melioidosis patients and 33 soil samples were examined by genomic DNA digestion with NcoI. Two major reproducible restriction patterns were observed. All clinical (Ara-) isolates and 9 Ara- soil isolates exhibited macrorestriction pattern I (MPI), while 24 soil isolates (Ara+) from central and northeastern Thailand displayed macrorestriction pattern II (MPII). The study here demonstrated pulsed-field gel electrophoresis to be a useful tool in epidemiological investigation possibly distinguishing virulent B. pseudomallei from avirulent B. thailandensis or even identifying closely related species of Burkholderia.  相似文献   

20.
The environmental saphrophyte Burkholderia pseudomallei is the causative agent of melioidosis, a systemic, potentially life-threatening condition endemic to many parts of south-east Asia and northern Australia. We have used the soil nematode Caenorhabditis elegans as a model host to characterize the mechanisms by which this bacterium mounts a successful infection. We find that C. elegans is susceptible to a broad range of Burkholderia species, and that the virulence mechanisms used by this pathogen to kill nematodes may be similar to those used to infect mammals. We also find that the specific dynamics of the C. elegans-B. pseudomallei host-pathogen interaction can be highly influenced by environmental factors, and that nematode killing results at least in part from the presence of a diffusible toxin. Finally, by screening for bacterial mutants attenuated in their ability to kill C. elegans, we genetically identify several new potential virulence factors in B. pseudomallei. The use of C. elegans as a model host should greatly facilitate future investigations into how B. pseudomallei can interact with host organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号