首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influenza virus hemagglutinin (HA) fuses membranes at endosomal pH by a process which involves extrusion of the NH2-terminal region of HA2, the fusion peptide, from its buried location in the native trimer. We have examined the amino acid sequence requirements for a functional fusion peptide by determining the fusion capacities of site-specific mutant HAs expressed by using vaccinia virus recombinants and of synthetic peptide analogs of the mutant fusion peptides. The results indicate that for efficient fusion, alanine can to some extent substitute for the NH2-terminal glycine of the wild-type fusion peptide but that serine, histidine, leucine, isoleucine, or phenylalanine cannot. In addition, mutants containing shorter fusion peptides as a result of single amino acid deletions are inactive, as is a mutant containing an alanine instead of a glycine at HA2 residue 8. Substitution of the glycine at HA2 residue 4 with an alanine increases the pH of fusion, and valine-for-glutamate substitutions at HA2 residues 11 and 15 are without effect. We confirm previous reports on the need for specific HAo cleavage to generate functional HAs, and we show that both inappropriately cleaved HA and mutant HAs, irrespective of their fusion capacities, upon incubation at low pH undergo the structural transition required for fusion.  相似文献   

2.
Li Y  Han X  Lai AL  Bushweller JH  Cafiso DS  Tamm LK 《Journal of virology》2005,79(18):12065-12076
Influenza virus hemagglutinin (HA)-mediated membrane fusion is initiated by a conformational change that releases a V-shaped hydrophobic fusion domain, the fusion peptide, into the lipid bilayer of the target membrane. The most N-terminal residue of this domain, a glycine, is highly conserved and is particularly critical for HA function; G1S and G1V mutant HAs cause hemifusion and abolish fusion, respectively. We have determined the atomic resolution structures of the G1S and G1V mutant fusion domains in membrane environments. G1S forms a V with a disrupted "glycine edge" on its N-terminal arm and G1V adopts a slightly tilted linear helical structure in membranes. Abolishment of the kink in G1V results in reduced hydrophobic penetration of the lipid bilayer and an increased propensity to form beta-structures at the membrane surface. These results underline the functional importance of the kink in the fusion peptide and suggest a structural role for the N-terminal glycine ridge in viral membrane fusion.  相似文献   

3.
Retroviral transmembrane proteins (TMs) contain an N-terminal fusion peptide that initiates virus-cell membrane fusion. The fusion peptide is linked to the coiled-coil core through a conserved sequence that is often rich in glycines. We investigated the functional role of the glycine-rich segment, Met-326 to Ser-337, of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, by alanine and proline scanning mutagenesis. Alanine substitution for the hydrophobic residue Ile-334 caused an approximately 90% reduction in cell-cell fusion activity without detectable effects on the lipid-mixing and pore formation phases of fusion. Alanine substitutions at other positions had smaller effects (Gly-329, Val-330, and Gly-332) or no effect on fusion function. Proline substitution for glycine residues inhibited cell-cell fusion function with position-dependent effects on the three phases of fusion. Retroviral glycoprotein fusion function thus appears to require flexibility within the glycine-rich segment and hydrophobic contacts mediated by this segment.  相似文献   

4.
Group II nucleopolyhedroviruses (NPVs), e.g., Spodoptera exigua MNPV, lack a GP64-like protein that is present in group I NPVs but have an unrelated envelope fusion protein named F. In contrast to GP64, the F protein has to be activated by a posttranslational cleavage mechanism to become fusogenic. In several vertebrate viral fusion proteins, the cleavage activation generates a new N terminus which forms the so-called fusion peptide. This fusion peptide inserts in the cellular membrane, thereby facilitating apposition of the viral and cellular membrane upon sequential conformational changes of the fusion protein. A similar peptide has been identified in NPV F proteins at the N terminus of the large membrane-anchored subunit F(1). The role of individual amino acids in this putative fusion peptide on viral infectivity and propagation was studied by mutagenesis. Mutant F proteins with single amino acid changes as well as an F protein with a deleted putative fusion peptide were introduced in gp64-null Autographa californica MNPV budded viruses (BVs). None of the mutations analyzed had an major effect on the processing and incorporation of F proteins in the envelope of BVs. Only two mutants, one with a substitution for a hydrophobic residue (F152R) and one with a deleted putative fusion peptide, were completely unable to rescue the gp64-null mutant. Several nonconservative substitutions for other hydrophobic residues and the conserved lysine residue had only an effect on viral infectivity. In contrast to what was expected from vertebrate virus fusion peptides, alanine substitutions for glycines did not show any effect.  相似文献   

5.
Fusion mutants of the influenza virus hemagglutinin glycoprotein   总被引:42,自引:0,他引:42  
The influenza virus hemagglutinin (HA) mediates viral entry into cells by a low pH induced membrane-fusion event in endosomal vesicles. Mutant viruses with altered pH dependence for both hemolysis and the HA conformational change required for fusion were selected for their ability to grow in cells treated with amantadine hydrochloride, which raises the endosomal pH. The amino acid sequence and three-dimensional location of 19 substitutions on the HA are reported. The mutations fall into two groups, one that results in the destabilization of the pH 7.0 location of the hydrophobic N-terminal HA2 peptide, and a second that results in the alteration of intersubunit contacts, suggesting a large distortion or disruption of these contacts in the "fusion-active" conformation.  相似文献   

6.
During membrane fusion, the influenza A virus hemagglutinin (HA) adopts an extended helical structure that contains the viral transmembrane and fusion peptide domains at the same end of the molecule. The peptide segments that link the end of this rod-like structure to the membrane-associating domains are approximately 10 amino acids in each case, and their structure at the pH of fusion is currently unknown. Here, we examine mutant HAs and influenza viruses containing such HAs to determine whether these peptide linkers are subject to specific length requirements for the proper folding of native HA and for membrane fusion function. Using pairwise deletions and insertions, we show that the region flanking the fusion peptide appears to be important for the folding of the native HA structure but that mutant proteins with small insertions can be expressed on the cell surface and are functional for membrane fusion. HA mutants with deletions of up to 10 residues and insertions of as many as 12 amino acids were generated for the peptide linker to the viral transmembrane domain, and all folded properly and were expressed on the cell surface. For these mutants, it was possible to designate length restrictions for efficient membrane fusion, as functional activity was observed only for mutants containing linkers with insertions or deletions of eight residues or less. The linker peptide mutants are discussed with respect to requirements for the folding of native HAs and length restrictions for membrane fusion activity.  相似文献   

7.
The role of residues in the conserved hydrophobic N-terminal fusion peptide of the paramyxovirus fusion (F) protein in causing cell-cell fusion was examined. Mutations were introduced into the cDNA encoding the simian virus 5 (SV5) F protein, the altered F proteins were expressed by using an eukaryotic vector, and their ability to mediate syncytium formation was determined. The mutant F proteins contained both single- and multiple-amino-acid substitutions, and they exhibited a variety of intracellular transport properties and fusion phenotypes. The data indicate that many substitutions in the conserved amino acids of the simian virus 5 F fusion peptide can be tolerated without loss of biological activity. Mutant F proteins which were not transported to the cell surface did not cause cell-cell fusion, but all of the mutants which were transported to the cell surface were fusion competent, exhibiting fusion properties similar to or better than those of the wild-type F protein. Mutant F proteins containing glycine-to-alanine substitutions had altered intracellular transport characteristics, yet they exhibited a great increase in fusion activity. The potential structural implications of this substitution and the possible importance of these glycine residues in maintaining appropriate levels of fusion activity are discussed.  相似文献   

8.
Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) is a newly identified member of the family Coronaviridae and poses a serious public health threat. Recent studies indicated that the SARS-CoV viral spike glycoprotein is a class I viral fusion protein. A fusion peptide present at the N-terminal region of class I viral fusion proteins is believed to initiate viral and cell membrane interactions and subsequent fusion. Although the SARS-CoV fusion protein heptad repeats have been well characterized, the fusion peptide has yet to be identified. Based on the conserved features of known viral fusion peptides and using Wimley and White interfacial hydrophobicity plots, we have identified two putative fusion peptides (SARS(WW-I) and SARS(WW-II)) at the N terminus of the SARS-CoV S2 subunit. Both peptides are hydrophobic and rich in alanine, glycine, and/or phenylalanine residues and contain a canonical fusion tripeptide along with a central proline residue. Only the SARS(WW-I) peptide strongly partitioned into the membranes of large unilamellar vesicles (LUV), adopting a beta-sheet structure. Likewise, only SARS(WW-I) induced the fusion of LUV and caused membrane leakage of vesicle contents at peptide/lipid ratios of 1:50 and 1:100, respectively. The activity of this synthetic peptide appeared to be dependent on its amino acid (aa) sequence, as scrambling the peptide rendered it unable to partition into LUV, assume a defined secondary structure, or induce both fusion and leakage of LUV. Based on the activity of SARS(WW-I), we propose that the hydrophobic stretch of 19 aa corresponding to residues 770 to 788 is a fusion peptide of the SARS-CoV S2 subunit.  相似文献   

9.
Crystal structure of unliganded influenza B virus hemagglutinin   总被引:2,自引:0,他引:2  
Wang Q  Cheng F  Lu M  Tian X  Ma J 《Journal of virology》2008,82(6):3011-3020
Here we report the crystal structure of hemagglutinin (HA) from influenza B/Hong Kong/8/73 (B/HK) virus determined to 2.8 Å. At a sequence identity of ~25% to influenza A virus HAs, B/HK HA shares a similar overall structure and domain organization. More than two dozen amino acid substitutions on influenza B virus HAs have been identified to cause antigenicity alteration in site-specific mutants, monoclonal antibody escape mutants, or field isolates. Mapping these substitutions on the structure of B/HK HA reveals four major epitopes, the 120 loop, the 150 loop, the 160 loop, and the 190 helix, that are located close in space to form a large, continuous antigenic site. Moreover, a systematic comparison of known HA structures across the entire influenza virus family reveals evolutionarily conserved ionizable residues at all regions along the chain and subunit interfaces. These ionizable residues are likely the structural basis for the pH dependence and sensitivity to ionic strength of influenza HA and hemagglutinin-esterase fusion proteins.  相似文献   

10.
The influenza virus hemagglutinin (HA) contains a cytoplasmic domain that consists of 10 to 11 amino acids, of which five residues have sequence identity for 10 of 13 HA subtypes. To investigate properties of these conserved residues, oligonucleotide-directed mutagenesis was performed, using an HA cDNA of influenza virus A/Udorn/72 (H3N2) to substitute the conserved cysteine residues with other residues, to delete the three C-terminal conserved residues, or to remove the entire cytoplasmic domain. The altered HAs were expressed in eukaryotic cells, and the rates of intracellular transport were examined. It was found that substitution of either conserved cysteine residue within the cytoplasmic domain did not affect the rate of intracellular transport, whereas deletion of residues within the C-terminal domain resulted in delayed cell surface expression. All the altered HAs were biologically active in hemadsorption and fusion assays. To investigate whether the wild-type HA and HAs with altered cytoplasmic tails could complement the influenza virus temperature-sensitive transport-defective HA mutant A/WSN/33 ts61S, the HA cDNAs were expressed by using a transient expression system and released virus was assayed by plaque analysis. The wild-type HA expression resulted in a release of approximately 10(3) PFU of virus per ml. Antibody neutralization of complemented virus indicated that the infectivity was due to incorporation of wild-type H3 HA into ts61S virions. Sucrose density gradient analysis of released virions showed that each of the HA cytoplasmic domain mutants was incorporated into virus particles. Virions containing HAs with substitution of the cysteine residues in the cytoplasmic domain were found to be infectious. However, no infectivity could be detected from virions containing HAs that had deletions in their cytoplasmic domains. Possible roles of the HA cytoplasmic domain in forming protein-protein interactions in virions and their involvement in the initiation of the infection process in cells are discussed.  相似文献   

11.
The incorporation of viral envelope (Env) glycoproteins into nascent particles is an essential step in the production of infectious human immunodeficiency virus type 1 (HIV-1). This process has been shown to require interactions between Env and the matrix (MA) domain of the Gag polyprotein. Previous studies indicate that several residues in the N-terminal region of MA are required for Env incorporation. However, the precise mechanism by which Env proteins are acquired during virus assembly has yet to be fully defined. Here, we examine whether a highly conserved glutamate at position 99 in the C-terminal helix is required for MA function and HIV-1 replication. We analyze a panel of mutant viruses that contain different amino acid substitutions at this position using viral infectivity studies, virus-cell fusion assays, and immunoblotting. We find that E99V mutant viruses are defective for fusion with cell membranes and thus are noninfectious. We show that E99V mutant particles of HIV-1 strains LAI and NL4.3 lack wild-type levels of Env proteins. We identify a compensatory substitution in MA residue 84 and show that it can reverse the E99V-associated defects. Taken together, these results indicate that the C-terminal hydrophobic pocket of MA, which encompasses both residues 84 and 99, has a previously unsuspected and key role in HIV-1 Env incorporation.  相似文献   

12.
Long G  Pan X  Vlak JM 《Journal of virology》2008,82(5):2437-2447
The heptad repeat (HR), a conserved structural motif of class I viral fusion proteins, is responsible for the formation of a six-helix bundle structure during the envelope fusion process. The insect baculovirus F protein is a newly found budded virus envelope fusion protein which possesses common features to class I fusion proteins, such as proteolytic cleavage and the presence of an N-terminal open fusion peptide and multiple HR domains on the transmembrane subunit F(1). Similar to many vertebrate viral fusion proteins, a conserved leucine zipper motif is predicted in this HR region proximal to the fusion peptide in baculovirus F proteins. To facilitate our understanding of the functional role of this leucine zipper-like HR1 domain in baculovirus F protein synthesis, processing, and viral infectivity, key leucine residues (Leu209, Leu216, and Leu223) were replaced by alanine (A) or arginine (R), respectively. By using Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) as a pseudotype expression system, we demonstrated that all mutant F proteins incorporated into budded virus, indicating that leucine substitutions did not affect intercellular trafficking of F. Furin-like protease cleavage was not affected by any of the leucine substitutions; however, the disulfide bridging and N-linked glycosylation patterns were partly altered. Single substitutions in HR1 showed that the three leucine residues were critical for F fusogenicity and the rescue of AcMNPV infectivity. Our results support the view that the leucine zipper-like HR1 domain is important to safeguard the proper folding, glycosylation, and fusogenicity of baculovirus F proteins.  相似文献   

13.
We determined the deduced amino acid sequences of two H1 duck influenza A virus hemagglutinins (HAs) and found that the consensus sequence of the HA, determined directly from virus recovered from the intestinal tract, remains unchanged through many generations of growth in MDCK cells and chicken embryos. These two duck viruses differ from each other by 5 amino acids and from A/Dk/Alberta/35/1976 (F. J. Austin, Y. Kawaoka, and R. G. Webster, J. Gen. Virol. 71:2471-2474, 1990) by 9 and 12 amino acids, most of which are in the HA1 subunit. They are antigenically similar to each other but different from the Alberta virus. We compared these H1 duck HAs with the HAs of human isolates to identify structural properties of this viral glycoprotein that are associated with host range. By comparison to the human H1 HAs, the duck virus HA sequences are highly conserved as judged by the small fraction of nucleotide differences between strains which result in amino acid substitutions. However, the most striking difference between these duck and human HAs is in the number and distribution of glycosylation sites. Whereas duck and swine viruses have four and five conserved glycosylation sites per HA1 subunit, none of which are on the tip of the HA, all human viruses have at least four additional sites, two or more of which are on the tip of the HA. These findings stress the role of glycosylation in the control of host range and suggest that oligosaccharides on the tip of the HA are important to the survival of H1 viruses in humans but not in ducks or swine.  相似文献   

14.
The avian and Nelson Bay reoviruses are two of only a limited number of nonenveloped viruses capable of inducing cell-cell membrane fusion. These viruses encode the smallest known membrane fusion proteins (p10). We now show that a region of moderate hydrophobicity we call the hydrophobic patch (HP), present in the small N-terminal ectodomain of p10, shares the following characteristics with the fusion peptides of enveloped virus fusion proteins: (i) an abundance of glycine and alanine residues, (ii) a potential amphipathic secondary structure, (iii) membrane-seeking characteristics that correspond to the degree of hydrophobicity, and (iv) the ability to induce lipid mixing in a liposome fusion assay. The p10 HP is therefore predicted to provide a function in the mechanism of membrane fusion similar to those of the fusion peptides of enveloped virus fusion peptides, namely, association with and destabilization of opposing lipid bilayers. Mutational and biophysical analysis suggested that the internal fusion peptide of p10 lacks alpha-helical content and exists as a disulfide-stabilized loop structure. Similar kinked structures have been reported in the fusion peptides of several enveloped virus fusion proteins. The preservation of a predicted loop structure in the fusion peptide of this unusual nonenveloped virus membrane fusion protein supports an imperative role for a kinked fusion peptide motif in biological membrane fusion.  相似文献   

15.
Membrane fusion mediated by coiled coils: a hypothesis   总被引:6,自引:0,他引:6       下载免费PDF全文
A molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.  相似文献   

16.
Myristoylation is important at multiple stages in poliovirus assembly.   总被引:23,自引:19,他引:4       下载免费PDF全文
N Moscufo  J Simons    M Chow 《Journal of virology》1991,65(5):2372-2380
The N-terminal glycine of the VP4 capsid subunit of poliovirus is covalently modified with myristic acid (C14 saturated fatty acid). To investigate the function of VP4 myristoylation in poliovirus replication, amino acid substitutions were placed within the myristoylation consensus sequence at the alanine residue (4003A) adjacent to the N-terminal glycine by using site-directed mutagenesis methods. Mutants which replace the alanine residue with a small hydrophobic residue such as leucine, valine, or glycine displayed normal levels of myristoylation and normal growth kinetics. Replacement with the polar amino acid histidine (4003A.H) also resulted in a level of myristoylation comparable to that of the wild type. However, replacement of the alanine residue with aspartic acid (4003A.D) caused a dramatic reduction (about 40 to 60%) in myristoylation levels of the VP4 precursors (P1 and VP0). In contrast, no differences in modification levels were found in either VP0 and VP4 proteins isolated from mature mutant virions, indicating that myristoylation is required for assembly of the infectious virion. The myristoylation levels of the VP0 proteins found in capsid assembly intermediates indicate that there is a strong but not absolute preference for myristoyl-modified subunits during pentamer formation. Complete myristoylation was observed in mature virions but not in assembly intermediates, indicating that there is a selection for myristoyl-modified subunits during stable RNA encapsidation to form the mature virus particle. In addition, even though mutant infectious virions are fully modified, the severe reduction in specific infectivity of both 4003A.D and 4003A.H purified viruses indicates that the amino acid residue adjacent to the N-terminal glycine apparently has an additional role early during viral infection and that mutations at this position induce pleiotropic effects.  相似文献   

17.
Ebola virus contains a single glycoprotein (GP) that is responsible for receptor binding and membrane fusion and is proteolytically cleaved into disulfide-linked GP1 and GP2 subunits. The GP2 subunit possesses a coiled-coil motif, which plays an important role in the oligomerization and fusion activity of other viral GPs. To determine the functional significance of the coiled-coil motif of GP2, we examined the effects of peptides corresponding to the coiled-coil motif of GP2 on the infectivity of a mutant vesicular stomatitis virus (lacking the receptor-binding/fusion protein) pseudotyped with the Ebola virus GP. A peptide corresponding to the C-terminal helix reduced the infectivity of the pseudotyped virus. We next introduced alanine substitutions into hydrophobic residues in the coiled-coil motif to identify residues important for GP function. None of the substitutions affected GP oligomerization, but some mutations, two in the N-terminal helix and all in the C-terminal helix, reduced the ability of GP to confer infectivity to the mutant vesicular stomatitis virus without affecting the transport of GP to the cell surface, its incorporation into virions, and the production of virus particles. These results indicate that the coiled-coil motif of GP2 plays an important role in facilitating the entry of Ebola virus into host cells and that peptides corresponding to this region could act as efficient antiviral agents.  相似文献   

18.
The severe acute respiratory syndrome coronavirus (SARS-CoV) spike glycoprotein (S) is a class I viral fusion protein that binds to its receptor glycoprotein, human angiotensin converting enzyme 2 (hACE2), and mediates virus entry and cell-cell fusion. The juxtamembrane domain (JMD) of S is an aromatic amino acid-rich region proximal to the transmembrane domain that is highly conserved in all coronaviruses. Alanine substitutions for one or two of the six aromatic residues in the JMD did not alter the surface expression of the SARS-CoV S proteins with a deletion of the C-terminal 19 amino acids (S Delta19) or reduce binding to soluble human ACE2 (hACE2). However, hACE2-dependent entry of trypsin-treated retrovirus pseudotyped viruses expressing JMD mutant S Delta19 proteins was greatly reduced. Single alanine substitutions for aromatic residues reduced entry to 10 to 60% of the wild-type level. The greatest reduction was caused by residues nearest the transmembrane domain. Four double alanine substitutions reduced entry to 5 to 10% of the wild-type level. Rapid hACE2-dependent S-mediated cell-cell fusion was reduced to 60 to 70% of the wild-type level for all single alanine substitutions and the Y1188A/Y1191A protein. S Delta19 proteins with other double alanine substitutions reduced cell-cell fusion further, from 40% to less than 20% of wild-type levels. The aromatic amino acids in the JMD of the SARS-CoV S glycoprotein play critical roles in receptor-dependent virus-cell and cell-cell fusion. Because the JMD is so highly conserved in all coronavirus S proteins, it is a potential target for development of drugs that may inhibit virus entry and/or cell-cell fusion mediated by S proteins of all coronaviruses.  相似文献   

19.
20.
Lantibiotic bovicin HJ50 is produced by Streptococcus bovis HJ50 and acts as the extracellular signal to autoregulate its own biosynthesis through BovK/R two-component system. Bovicin HJ50 shows a linear N-terminal and glubolar C-terminal structure, and the sensor histidine kinase BovK contains eight transmembrane segments lacking any extensive surface-exposed sensory domain. The signal recognition mechanism between bovicin HJ50 and BovK is still unknown. We performed saturated alanine scanning mutagenesis and other amino acid substitutions on bovicin HJ50 using a semi-in vitro biosynthesis. Results of the mutants inducing activities indicated that several charged and hydrophobic amino acids in ring B of bovicin HJ50, as well as two glycines were key residues to recognize BovK. Circular dichroism analyses indicated that both glycines contributed to bovicin HJ50 structural changes in the membrane. Biotin-labeled bovicin HJ50 could interact with the N-terminal sensor of BovK, and several charged residues and a conserved hydrophobic region in the N-terminal portion of BovK sensor domain were important for interacting with the signal bovicin HJ50. By combining the results, we suggested a mechanism of bovicin HJ50 recognizing and activating BovK mainly through electrostatic and hydrophobic interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号