首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

2.
Tissue microarrays maximize returns in cellular pathology whilst minimizing the use of cells and tissues. They are made by arraying cores of tissue taken from multiple donor blocks into a single recipient block. Accordingly, the histology and pathology of several hundred tissues can be represented in one tissue microarray that, when stained by immunohistochemistry, provides comprehensive topographic information on protein expression. Used with complimentary techniques, such as complementary DNA microarray analysis, tissue microarrays are providing valuable data for the identification of new markers of disease and assisting in the discovery of therapeutic targets. They are also leading a revolution in cellular pathology as high-throughput technology is introduced to maximize the information provided.  相似文献   

3.
High-throughput systems allow screening and analysis of large number of samples simultaneously under same conditions. Over recent years, high-throughput systems have found applications in fields other than drug discovery like bioprocess industries, pollutant detection, material microarrays, etc. With the introduction of materials in such HT platforms, the screening system has been enabled for solid phases apart from conventional solution phase. The use of biomaterials has further facilitated cell-based assays in such platforms. Here, the authors have focused on the recent developments in biomaterial-based platforms including the fabricationusing contact and non-contact methods and utilization of such platforms for discovery of novel biomaterials exploiting interaction of biological entities with surface and bulk properties. Finally, the authors have elaborated on the application of the biomaterial-based high-throughput platforms in tissue engineering and regenerative medicine, cancer and stem cell studies. The studies show encouraging applications of biomaterial microarrays. However, success in clinical applicability still seems to be a far off task majorly due to absence of robust characterization and analysis techniques. Extensive focus is required for developing personalized medicine, analytical tools and storage/shelf-life of cell laden microarrays.  相似文献   

4.

Background  

Tissue microarray (TMA) technology has been developed to facilitate large, genome-scale molecular pathology studies. This technique provides a high-throughput method for analyzing a large cohort of clinical specimens in a single experiment thereby permitting the parallel analysis of molecular alterations (at the DNA, RNA, or protein level) in thousands of tissue specimens. As a vast quantity of data can be generated in a single TMA experiment a systematic approach is required for the storage and analysis of such data.  相似文献   

5.
Microarrays: handling the deluge of data and extracting reliable information   总被引:13,自引:0,他引:13  
Application of powerful, high-throughput genomics technologies is becoming more common and these technologies are evolving at a rapid pace. Genomics facilities are being established in major research institutions to produce inexpensive, customized cDNA microarrays that are accessible to researchers in a broad range of fields. These high-throughput platforms have generated a massive onslaught of data, which threatens to overwhelm researchers. Although microarrays show great promise, the technology has not matured to the point of consistently generating robust and reliable data when used in the average laboratory. This article addresses several aspects related to the handling of the deluge of microarray data and extracting reliable information from these data. We review the essential elements of data acquisition, data processing and data analysis, and briefly discuss issues related to the quality, validation and storage of data. Our goal is to point out some of the problems that must be overcome before this promising technology can achieve its full potential.  相似文献   

6.
Tissue microarrays are a high-throughput method for the investigation of biomarkers in multiple tissue specimens at once. This technique allows for the analysis of up to 500 tissue samples in a single experiment using immunohistochemistry and in situ hybridization. Recently, cell lines and xenografts have been reduced to a tissue microarray format and are being applied to preclinical drug development. In clinical research, tissue microarrays are applied at multiple levels: comprehensive analysis of samples in the context of a clinical trial or across a population. Tissue microarrays play a central role in translational research, facilitating the discovery of molecules that have potential roles in the diagnosis, prognosis and prediction of response to therapy.  相似文献   

7.
The widespread use of DNA microarrays has led to the discovery of many genes whose expression profile may have significant clinical relevance. The translation of this data to the bedside requires that gene expression be validated as protein expression, and that annotated clinical samples be available for correlative and quantitative studies to assess clinical context and usefulness of putative biomarkers. We review two microarray platforms developed to facilitate the clinical validation of candidate biomarkers: tissue microarrays and reverse-phase protein microarrays. Tissue microarrays are arrays of core biopsies obtained from paraffin-embedded tissues, which can be assayed for histologically-specific protein expression by immunohistochemistry. Reverse-phase protein microarrays consist of arrays of cell lysates or, more recently, plasma or serum samples, which can be assayed for protein quantity and for the presence of post-translational modifications such as phosphorylation. Although these platforms are limited by the availability of validated antibodies, both enable the preservation of precious clinical samples as well as experimental standardization in a high-throughput manner proper to microarray technologies. While tissue microarrays are rapidly becoming a mainstay of translational research, reverse-phase protein microarrays require further technical refinements and validation prior to their widespread adoption by research laboratories.  相似文献   

8.
Microarrays enable high-throughput parallel gene expression analysis, and their use has grown exponentially during the past decade. We are now in a position where individual experiments could benefit from using the swelling public data repositories to allow microarrays to progress from being a hypothesis-generating tool to a powerful resource that can be used to test hypothesis about biology. Comparative microarray analysis could better distinguish phenotypes from associated phenotypes; identify valid differentially expressed genes by combining many studies; test new hypothesis; and discover fundamental patterns of gene regulation. This review aims to describe the additional methodology needed for such comparative microarray analysis, and we identify and discuss a number of problems such as loss of published data, lack of annotations, and variable array quality, which need to be solved before comparative microarray analysis can be used in a more systematic and powerful manner.  相似文献   

9.
Tissue microarrays are a high-throughput method for the investigation of biomarkers in multiple tissue specimens at once. This technique allows for the analysis of up to 500 tissue samples in a single experiment using immunohistochemistry and in situ hybridization. Recently, cell lines and xenografts have been reduced to a tissue microarray format and are being applied to preclinical drug development. In clinical research, tissue microarrays are applied at multiple levels: comprehensive analysis of samples in the context of a clinical trial or across a population. Tissue microarrays play a central role in translational research, facilitating the discovery of molecules that have potential roles in the diagnosis, prognosis and prediction of response to therapy.  相似文献   

10.
News in Brief     
Archival formalin-fixed, paraffin-embedded (FFPE) tissue and their associated diagnostic records represent an invaluable source of retrospective proteomic information on diseases for which the clinical outcome and response to treatment are known. However, analysis of archival FFPE tissues by high-throughput proteomic methods has been hindered by the adverse effects of formaldehyde fixation and subsequent tissue histology. This review examines recent methodological advances for extracting proteins from FFPE tissue suitable for proteomic analysis. These methods, based largely upon heat-induced antigen retrieval techniques borrowed from immunohistochemistry, allow at least a qualitative analysis of the proteome of FFPE archival tissues. The authors also discuss recent advances in the proteomic analysis of FFPE tissue; including liquid-chromatography tandem mass spectrometry, reverse phase protein microarrays and imaging mass spectrometry.  相似文献   

11.
Tissue microarrays are increasingly important tools that bring high-throughput technology to traditional pathology laboratories. In many cases, each spot on a tissue microarray is scored by a skilled pathologist and recorded manually. TAD consists of an Active Server Page web interface to a relational database that automates recording scores and linking them with clinical data for future interpretation. TAD is an open source application that can be installed locally.  相似文献   

12.
13.
Tanabe L  Scherf U  Smith LH  Lee JK  Hunter L  Weinstein JN 《BioTechniques》1999,27(6):1210-4, 1216-7
The trend toward high-throughput techniques in molecular biology and the explosion of online scientific data threaten to overwhelm the ability of researchers to take full advantage of available information. This problem is particularly severe in the rapidly expanding area of gene expression experiments, for example, those carried out with cDNA microarrays or oligonucleotide chips. We present an Internet-based hypertext program, MedMiner, which filters and organizes large amounts of textual and structured information returned from public search engines like GeneCards and PubMed. We demonstrate the value of the approach for the analysis of gene expression data, but MedMiner can also be extended to other areas involving molecular genetic or pharmacological information. More generally still, MedMiner can be used to organize the information returned from any arbitrary PubMed search.  相似文献   

14.
15.
DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by. the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2'-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5'-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

16.
The genomic DNA methylation pattern (methylome) is a cell epigenetic program that controls the expression of genetic information. The methylation pattern substantially changes in early carcinogenesis. A detailed survey of the methylcytosine distribution in the genome in norm and pathology is of immense importance for a better understanding of the etiology of cancer and its early diagnosis. The techniques available make it possible to simultaneously examine many samples (high-throughput analysis) and to examine large genome loci or even the total methylome (large-scale analysis). The review considers the main trends in the development of new approaches to DNA methylation and describes the techniques most commonly used in the field, their application, and results. Emphasis is placed on the use of various DNA microarrays (oligonucleotide microarrays, BAC arrays, etc.) as a method of choice for epigenetic analysis of tumors. Alternative sequence-based techniques of methylation analysis are discussed. The use of large-scale analysis to identify new epigenetic markers and to develop an epigenetic classification of neoplasms is considered.  相似文献   

17.

DNA microarrays require tens of thousands of deoxyoligonucleotides to be registered in an addressable fashion through immobilization, so that they have the high-throughput capability of analyzing a large number of samples simultaneously in a minimal volume of each reagent. However, using immobilized DNA molecules on microarrays can impose certain technical problems for some assays. For example, high background noise has been observed in using immobilized oligonucleotide microarrays (DNA chip) for primer extension reactions. This noise may be associated with the reactions of secondary structures formed by the adjacent primers physically constrained on the surface. Single-base extension (SBE) of arrayed primers on a chip has been extensively used in mini-sequencing to examine single nucleotide polymorphisms (SNP). Some primers appeared to be extendable in the absence of any template and thus competed against the base extension directed by the assay target such as genomic DNA. In this article, a method is reported that is capable of reducing template-independent extension by the substitution of a 2′-methoxyribonucleotide in the otherwise oligodeoxyribonucleotide primer. The surrogate compound placed at the 5′-end of the putative secondary structure sequence of a given primer was able to inhibit template-independent extension and to improve data quality of surface-attached primer extension assays.  相似文献   

18.
Bertone P  Snyder M 《The FEBS journal》2005,272(21):5400-5411
Numerous innovations in high-throughput protein production and microarray surface technologies have enabled the development of addressable formats for proteins ordered at high spatial density. Protein array implementations have largely focused on antibody arrays for high-throughput protein profiling. However, it is also possible to construct arrays of full-length, functional proteins from a library of expression clones. The advent of protein-based microarrays allows the global observation of biochemical activities on an unprecedented scale, where hundreds or thousands of proteins can be simultaneously screened for protein-protein, protein-nucleic acid, and small molecule interactions. This technology holds great potential for basic molecular biology research, disease marker identification, toxicological response profiling and pharmaceutical target screening.  相似文献   

19.
20.
Tissue microarrays are ordered arrays of hundreds to thousands of tissue cores in a single paraffin block. We invented a novel method to make a high-throughput microarray group. Conventional smaller tissue microarrays were made first and then sectioned. Separate paraffin films were arrayed orderly onto a regular-sized glass slide to form a larger microarray group. Sections were not floated in a water bath but, rather, were cut singly using conventional microtome, arrayed orderly onto the glass slide with forceps instead of using a tape-based tissue transfer system, and then unfolded with warm water (46° C) using a micropipette. This not only lowers the difficulty in sectioning but the overall tissue disks can be included in the same section. A microarray group of 2,534 small disks (theoretically, 2,560 disks can be made; 26 fell off during the procedure), the most up to now, was successfully made and may be used in immunohistochemistry, mRNA in situ hybridization, and flourescent in situ hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号