首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was designed to determine the effect of inhibitors of cyclooxygenase (COX)-1, COX-2, and the nonselective COX inhibitor naproxen on coronary vasoactivity and thrombogenicity under baseline and lipopolysaccharide (LPS)-induced inflammatory conditions. We hypothesize that endothelial COX-1 is the primary COX isoform in the canine normal coronary artery, which mediates arachidonic acid (AA)-induced vasodilatation. However, COX-2 can be induced and overexpressed by inflammatory mediators and becomes the major local COX isoform responsible for the production of antithrombotic prostaglandins during systemic inflammation. The interventions included the selective COX-1 inhibitor SC-560 (0.3 mg/kg iv), the selective COX-2 inhibitor nimesulide (5 mg/kg iv), or the nonselective COX inhibitor naproxen (3 mg/kg iv). The selective prostacyclin (IP) receptor antagonist RO-3244794 (RO) was used as an investigational tool to delineate the role of prostacyclin (PGI(2)) in modulating vascular reactivity. AA-induced vasodilatation of the left circumflex coronary artery was suppressed to a similar extent by each of the COX inhibitors and RO. The data suggest that AA-induced vasodilatation in the normal coronary artery is mediated by a single COX isoform, the constitutive endothelial COX-1, which is reported to be susceptible to COX-2 inhibitors. The effect of the COX inhibitors on thrombus formation was evaluated in a model of carotid artery thrombosis secondary to electrolytic-induced vessel wall injury. Pretreatment with LPS (0.5 mg/kg iv) induced a systemic inflammatory response and prolonged the time-to-occlusive thrombus formation, which was reduced in the LPS-treated animals by the administration of nimesulide. In contrast, neither SC-560 nor naproxen influenced the time to thrombosis in the animals pretreated with LPS. The data are of significance in view of reported adverse cardiovascular events observed in clinical trials involving the use of selective COX-2 inhibitors, thereby suggesting that the endothelial constitutive COX-1 and the inducible vascular COX-2 serve important functions in maintaining vascular homeostasis.  相似文献   

2.
Cyclooxygenase (COX) catalyses the rate-limiting step of prostanoid biosynthesis. Two COX isoforms have been identified, COX-1, the constitutive form, and COX-2, the inducible form. While COX-2 has been implicated in body fat regulation, the underlying cellular mechanism remains to be elucidated. The present study was undertaken to examine the potential role of COX in modulating adipogenesis and to dissect the relative contribution of the two isoenzymes in this process. COX-2 was found to be expressed in undifferentiated 3T3-L1 cells and down-regulated during differentiation, whereas the cellular level of COX-1 remained relatively constant. Abrogating the activity of either of these two isoenzymes by selective COX inhibitors accelerated cellular differentiation, suggesting that both COX isoenzymes negatively influenced differentiation. Tumor necrosis factor-alpha (TNFalpha) significantly up-regulated COX-2 expression ( approximately 2-fold) in differentiating 3T3-L1 cells, whereas similar effect was not observed with COX-1 expression. Abrogating the induced COX-2 activity reversed the TNFalpha-induced inhibition of differentiation by approximately 70%, implying a role for COX-2 in mediating TNFalpha signaling. Hence, both COX isoforms were involved in the negative modulation of adipocyte differentiation. COX-2 appeared to be the main isoform mediating at least part of the negative effects of TNFalpha.  相似文献   

3.
Both cyclooxygenase (COX)-1 and COX-2, encoded by Ptgs1 and Ptgs2, function coordinately during inflammation. But the relative contributions and compensations of COX-1 and COX-2 to inflammatory responses remain unanswered. We used three engineered mouse lines where the Ptgs1 and Ptgs2 genes substitute for one another to discriminate the distinct roles and interchangeability of COX isoforms during systemic inflammation. In macrophages, kidneys, and lungs, “flipped” Ptgs genes generate a “reversed” COX expression pattern, where the knock-in COX-2 is expressed constitutively and the knock-in COX-1 is lipopolysaccharide inducible. A panel of eicosanoids detected in serum and kidney demonstrates that prostaglandin (PG) biosynthesis requires native COX-1 and cannot be rescued by the knock-in COX-2. Our data further reveal preferential compensation of COX isoforms for prostanoid production in macrophages and throughout the body, as reflected by urinary PG metabolites. NanoString analysis indicates that inflammatory networks can be maintained by isoform substitution in inflamed macrophages. However, COX-1>COX-2 macrophages show reduced activation of inflammatory signaling pathways, indicating that COX-1 may be replaced by COX-2 within this complex milieu, but not vice versa. Collectively, each COX isoform plays a distinct role subject to subcellular environment and tissue/cell-specific conditions, leading to subtle compensatory differences during systemic inflammation.  相似文献   

4.
The cyclooxygenase (COX) superfamily of prostaglandin synthase genes encode a constitutively expressed COX-1, an inducible, highly regulated COX-2, and a COX-3 isoform whose RNA is derived through the retention of a highly structured, G + C-rich intron 1 of the COX-1 gene. As generators of oxygen radicals, lipid mediators, and the pharmacological targets of nonsteroidal anti-inflammatory drugs (NSAIDs), COX enzymes potentiate inflammatory neuropathology in Alzheimer's disease (AD) brain. Because COX-2 is elevated in AD and COX-3 is enriched in the mammalian CNS, these studies were undertaken to examine the expression of COX-3 in AD and in [IL-1beta + Abeta42]-triggered human neural (HN) cells in primary culture. The results indicate that while COX-2 remains a major player in propagating inflammmation in AD and in stressed HN cells, COX-3 may play ancillary roles in membrane-based COX signaling or when basal levels of COX-1 or COX-2 expression persist.  相似文献   

5.
Neuroinflammation has been implicated in the pathogenesis or the progression of a variety of acute and chronic neurological and neurodegenerative disorders, including Alzheimer’s disease. Prostaglandin H synthases or cyclooxygenases (COX -1 and COX-2) play a central role in the inflammatory cascade by converting arachidonic acid into bioactive prostanoids. In this review, we highlighted recent experimental data that challenge the classical view that the inducible isoform COX-2 is the most appropriate target to treat neuroinflammation. First, we discuss data showing that COX-2 activity is linked to anti-inflammatory and neuroprotective actions and is involved in the generation of novel lipid mediators with pro-resolution properties. Then, we review recent data demonstrating that COX-1, classically viewed as the homeostatic isoform, is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, IL-1β, and TNF-α. Overall, we suggest revisiting the traditional views on the roles of each COX during neuroinflammation and we propose COX-1 inhibition as a viable therapeutic approach to treat CNS diseases with a marked inflammatory component.  相似文献   

6.
Cyclooxygenase (COX), existing as the COX-1 and COX-2 isoforms, converts arachidonic acid to prostaglandin H2, which is then further metabolized to various prostaglandins. Vascular endothelial growth factor (VEGF) has been shown to play important roles in inflammation and is upregulated by the prostaglandin E series through COX-2 in several cell types. Here, we have investigated the effects of VEGF on the COX isoform expressed in human umbilical vein endothelial cells (HUVEC). The signalling mechanism of the COX isoform expressed in endothelial cells activated with VEGF will be also investigated using the tyrosine kinase inhibitor, genistein, and protein kinase C inhibitor, staurosporine. The activity of COX-2 was assessed by measuring the production of 6-keto-prostaglandin F1alpha in the presence of exogenous arachidonic acids (10 microM, 10 min) by enzyme immunoassay. The expression of COX isoform protein was detected by immunoblot using specific antibodies. Untreated HUVEC contained no COX-2 protein. In HUVEC treated with VEGF (0.01-50 ng/ml), COX-2 protein, but not COX-1, and COX activity were increased in a dose-dependent manner. Interestingly, the increased COX-2 protein and activity in response to VEGF (10 ng/ml) was inhibited by the tyrosine kinase inhibitor, genistein (0.05-5 microg/ml), but not by the protein kinase C inhibitor, staurosporine (0.1-10 ng/ml). Thus, the induction of COX-2 by VEGF in endothelial cells was mediated through protein tyrosine kinase, and the uses of specific COX-2 inhibitors in these conditions, in which VEGF was involved, might have a role.  相似文献   

7.
8.
Cyclooxygenase (COX) is involved in modulating inflammatory response through the synthesis of prostaglandins. The inducible isoform of the enzyme, COX-2, is overexpressed in some malignant and premalignant lesions. Several preclinical and clinical studies have reported COX-2 inhibition as an effective strategy for chemoprevention. Nonsteroidal anitinflammatory drugs (NASIDs) such as celecoxib, are the most widely investigated COX-2 inhibitors. The oil-soluble diallyl sulfides (DAS) include monosulfides (DAMS), disulfides (DADS) and trisulfides (DATS). They were found to be effective against canine and human tumors, the mechanism of which remains unresolved. We attempted a comparative evaluation of the antiproliferative effect of DAS in HEK 293T cells. The cells were treated with increasing concentrations of DAMS, DADS and DATS. There were significant differences between the IC50 values of DAMS, DADS and DATS. RT-PCR was performed and the expression of COX-2 was compared with that of b actin. DATS inhibited COX-2 gene expression significantly stronger than DAMS and DADS. The data are suggestive of antineoplastic effect of DAS, mediated by controlling COX-2 expression.  相似文献   

9.
10.
Adipocytes and the precursor cells express two types of cyclooxygenase (COX) isoforms that are involved in the biosynthesis of different types of prostaglandins (PGs) exerting opposite effects on adipogenesis. To evaluate the role of the inducible COX-2 isoform in the control of the differentiation and maturation of adipocytes, we employed an antisense technology to suppress specifically the expression of COX-2 in adipocytes. Cultured 3T3-L1 preadipocytes were transfected stably with a mammalian expression vector having the full-length cDNA encoding mouse COX-2 oriented in the antisense direction. The cloned transfectants with antisense COX-2 exhibited stable expression of antisense RNA for COX-2, which was accompanied by the suppressed expression of mRNA and protein levels of sense COX-2. However, almost no alteration in the expression of COX-1 was detected. The transfectants with antisense COX-2 showed significant decreases in the delayed synthesis of PGE2 involving the inducible COX-2 in response to cell stimuli. By contrast, the immediate synthesis of PGE2 associated with the constitutive COX-1 was not influenced appreciably. The stable expression of antisense mRNA of COX-2 resulted in significant stimulation of fat storage during the maturation phase without affecting the cell proliferation associated with the clonal expansion phase. The gene expression studies revealed higher expression levels of adipocyte-specific markers in the transfectants with antisense COX-2, indicating the mechanism that stimulates adipogenesis program. The up-regulation of fat storage was appreciably prevented by anti-adipogenic prostanoids, such as PGE2 and PGF, during the maturation phase. These results suggest that COX-2 is more preferentially involved in the generation of endogenous anti-adipogenic prostanoids during the maturation phase of adipocytes.  相似文献   

11.
Using intracerebral microdialysis, we reported previously that acute in vivo activation of NMDA glutamate receptors triggers rapid and transient releases of prostaglandin E2 (PGE2) and F2-isoprostane 15-F(2t)-IsoP in the hippocampus of freely moving rats. The formation of the two metabolites--produced through cyclo-oxygenase (COX) enzymatic activity and free radical-mediated peroxidation of arachidonic acid (AA), respectively,--was prevented by the specific NMDA antagonist MK-801, and was largely dependent on COX-2 activity. Here, we demonstrate that besides COX-2, which is the prominent COX isoform in the brain and particularly in the hippocampus, the constitutive isoform, COX-1 also contributes to prostaglandin (PG) synthesis and oxidative damage following in vivo acute activation of hippocampal NMDA glutamate receptors. The relative contribution of the two isoforms is dynamically regulated, as the COX-2 selective inhibitor NS398 immediately prevented PGE2 and 15-F(2t)-IsoP formation during the application of NMDA, whereas the COX-1 selective inhibitor SC560 was effective only 1 h after agonist infusion. Our data suggest that, although COX-2 is the prominent isoform, COX-1 activity may significantly contribute to excitotoxicity, particularly when considering the amount of lipid peroxidation associated with its catalytic cycle. We suggest that both isoforms should be considered as possible therapeutic targets to prevent brain damage caused by excitotoxicity.  相似文献   

12.
We previously reported that indomethacin induces a chronic intestinal inflammation in the rat where the cyclical characteristic phases of Crohn's disease are manifested with a few days' interval and lasting for several months: active phase (high inflammation, hypomotility, bacterial translocation) and reactive phase (low inflammation, hypermotility, no bacterial translocation). In this study, we investigated the possible role of both constitutive and inducible isoforms of nitric oxide (NO) synthase (NOS) and cyclooxygenase (COX) in the cyclicity of active and reactive phases in rats with chronic intestinal inflammation. Rats selected at either active or reactive phases and from 2 to 60 days after indomethacin treatment were used. mRNA expression of both constitutive and inducible NOS and COX isoforms in each phase was evaluated by RT-PCR and cellular enzyme localization by immunohistochemistry. The effects of different COX and NOS inhibitors on the intestinal motor activity were tested. mRNA expression of COX-1 was not modified by inflammation, whereas mRNA expression of neuronal NOS was reduced in all indomethacin-treated rats. In contrast, NOS and COX inducible forms showed a cyclical oscillation. mRNA expression and protein of both iNOS and COX-2 increased only during active phases. The intestinal hypomotility associated with active phases was turned into hypermotility after the administration of selective iNOS inhibitors. Sustained downregulation of constitutive NOS caused hypermotility, possibly as a defense mechanism. However, this reaction was masked during the active phases due to the inhibitory effects of NO resulting from the increased levels of the inducible NOS isoform.  相似文献   

13.
Cyclooxygenases (COX) are a family of enzymes involved in the biosynthesis of prostaglandin (PG) and thromboxanes. The inducible enzyme cyclooxygenase-2 (COX-2) is the major isoform found in normal brain, where it is constitutively expressed in neurons and is further up-regulated during several pathological events, including seizures and ischaemia. Emerging evidence suggests that COX-2 is implicated in excitotoxic neurodegenerative phenomena. It remains unclear whether PGs or other products associated to COX activity take part in these processes. Indeed, it has been suggested that reactive oxygen species, produced by COX, could mediate neuronal damage. In order to obtain direct evidence of free radical production during COX activity, we undertook an in vivo microdialysis study to monitor the levels of PGE(2) and 8-epi-PGF(2alpha) following infusion of N-methyl-D-aspartate (NMDA). A 20-min application of 1 mm NMDA caused an immediate, MK-801-sensitive increase of both PGE(2) and 8-epi-PGF(2alpha) basal levels. These effects were largely prevented by the specific cytosolic phospholipase A(2) (cPLA(2) ) inhibitor arachidonyl trifluoromethyl ketone (ATK), by non- selective COX inhibitors indomethacin and flurbiprofen or by the COX-2 selective inhibitor NS-398, suggesting that the NMDA-evoked prostaglandin synthesis and free radical-mediated lipid peroxidation are largely dependent on COX-2 activity. As several lines of evidence suggest that prostaglandins may be potentially neuroprotective, our findings support the hypothesis that free radicals, rather than prostaglandins, mediate the toxicity associated to COX-2 activity.  相似文献   

14.
15.
Summary Prostaglandins are considered to play important roles in gastric mucosal protection. The rate-limiting enzyme involved in the biosynthesis of prostaglandins is cyclooxygenase (COX), also known as prostaglandin H synthase. Two forms of COX are known: a constitutively expressed form (COX-1) and a newly-characterized, inducible form (COX-2). In the present study, the immunocytochemical localization of COX-1 and COX-2 was examined in the rat gastrointestinal tract. A strong immunoreactivity for COX-1 was localized in the mucous neck cells of gastric gland. A weak reactivity for COX-1 was also found in the mucous cell types in the cardiac gland and pyloric gland of the stomach as well as in the Brunner's gland of duodenum. Ultrastructurally, the immunoreactivity was localized to the apical cytoplasm of these cells. On the other hand, immunoreactivity for COX-2 was distributed in the surface mucous cells in both the fundic and pyloric regions of stomach. These results suggest that a subset of mucous cells is the primary site for production of prostaglandins in the rat gastrointestinal tract, and that two forms of COX are expressed in distinct types of mucous cell.  相似文献   

16.
Recent observations show a positive correlation between the expression of cyclooxygenase (COX), especially COX-2), and cancer development. Here we tested the hypothesis that expression of COX-2 could influence apoptosis in lung cancer cell lines. To address this question, we determined the effects of camptothecin-induced apoptosis on three lung cancer cell lines which over express COX-1 (CORL23), COX-2 (MOR-P) and neither isoform (H-460), and determine if these effects were prostaglandin mediated. We also compared the effects of non-selective and isoenzyme selective COX-2 inhibitors on camptothecin-induced apoptosis in these three cell lines. Camptothecin induced apoptosis in all three cell lines independently of COX-1 or COX-2 expression. Indomethacin, a non-selective COX inhibitor and NS398, a selective COX-2 inhibitor had no effect on camptothecin-induced apoptosis at concentrations that abolished prostaglandin production. In conclusion, these finding suggest that the COX pathway is not involved in camptothecin-induced apoptosis of non-small cell lung cancer cell lines.  相似文献   

17.
NO produced by the inducible NO synthase (NOS2) and prostanoids generated by the cyclooxygenase (COX) isoforms and terminal prostanoid synthases are major components of the host innate immune and inflammatory response. Evidence exists that pharmacological manipulation of one pathway could result in cross-modulation of the other, but the sense, amplitude, and relevance of these interactions are controversial, especially in vivo. Administration of 6 mg/kg LPS to rats i.p. resulted 6 h later in induction of NOS2 and the membrane-associated PGE synthase (mPGES) expression, and decreased constitutive COX (COX-1) expression. Low level inducible COX (COX-2) mRNA with absent COX-2 protein expression was observed. The NOS2 inhibitor aminoguanidine (50 and 100 mg/kg i.p.) dose dependently decreased both NO and prostanoid production. The LPS-induced increase in PGE(2) concentration was mediated by NOS2-derived NO-dependent activation of COX-1 pathway and by induction of mPGES. Despite absent COX-2 protein, SC-236, a putative COX-2-specific inhibitor, decreased mPGES RNA expression and PGE(2) concentration. Ketoprofen, a nonspecific COX inhibitor, and SC-236 had no effect on the NOS2 pathway. Our results suggest that in a model of systemic inflammation characterized by the absence of COX-2 protein expression, NOS2-derived NO activates COX-1 pathway, and inhibitors of COX isoforms have no effect on NOS2 or NOS3 (endothelial NOS) pathways. These results could explain, at least in part, the deleterious effects of NOS2 inhibitors in some experimental and clinical settings, and could imply that there is a major conceptual limitation to the use of NOS2 inhibitors during systemic inflammation.  相似文献   

18.
Polymorphonuclear neutrophils (granulocytes; PMNs) are often the first blood cells to migrate toward inflammatory lesions to perform host defense functions. PMNs respond to specific stimuli by releasing several factors and generate lipid mediators of inflammation from the 5-lipoxygenase and the inducible cyclooxygenase (COX)-2 pathways. In view of adenosine's anti-inflammatory properties and suppressive impact on the 5-lipoxygenase pathway, we addressed in this study the impact of this autacoid on the COX-2 pathway. We observed that adenosine up-regulates the expression of the COX-2 enzyme and mRNA. Production of PGE(2) in response to exogenous arachidonic acid was also increased by adenosine and correlated with COX-2 protein levels. The potentiating effect of adenosine on COX-2 could be mimicked by pharmacological increases of intracellular cAMP levels, involving the latter as a putative second messenger for the up-regulation of COX-2 by adenosine. Specific COX-2 inhibitors were used to confirm the predominant role of the COX-2 isoform in the formation of prostanoids by stimulated PMNs. Withdrawal of extracellular adenosine strikingly emphasized the inhibitory potential of PGE(2) on leukotriene B(4) formation and involved the EP(2) receptor subtype in this process. Thus, adenosine may promote a self-limiting regulatory process through the increase of PGE(2) generation, which may result in the inhibition of PMN functions. This study identifies a new aspect of the anti-inflammatory properties of adenosine in leukocytes, introducing the concept that this autacoid may exert its immunomodulatory activities in part by modifying the balance of lipid mediators generated by PMNs.  相似文献   

19.
20.
There are two cyclooxygenase (COX) genes encoding characterized enzymes, COX-1 and COX-2. Nonsteroidal anti-inflammatory drugs are commonly used as analgesics in inflammatory arthritis, and these often inhibit both cyclooxygenases. Recently, inhibitors of COX-2 have been used in the treatment of inflammatory arthritis, as this isoform is thought to be critical in inflammation and pain. The objective of this study was to determine the effect of COX-1 or COX-2 gene disruption on the development of chronic Freund's adjuvant-induced arthritis and inflammatory pain in male and female mice. The effect of COX-1 or COX-2 gene disruption on inflammatory hyperalgesia, allodynia, inflammatory edema, and arthritic joint destruction was studied. COX-2 knockout mice (COX-2-/-) showed reduced edema and joint destruction in female, but not male, animals. In addition, neither male nor female COX-2-/- mice developed thermal hyperalgesia or mechanical allodynia, either ipsilateral or contralateral to the inflammation. COX-1 gene disruption also reduced inflammatory edema and joint destruction in female, but not male mice, although females of both COX-/- lines did show some bony destruction. There was no difference in ipsilateral allodynia between COX-1 knockout and wild-type animals, but female COX-1-/- mice showed reduced contralateral allodynia compared with male COX-1-/- or wild-type mice. These data show that the gene products of both COX genes contribute to pain and local inflammation in inflammatory arthritis. There are sex differences in some of these effects, and this suggests that the effects of COX inhibitors may be sex dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号