首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydroxyurea, when injected intraperitoneally at a dose of 1 mg/g body weight, inhibited thymidine kinase activity in developing rat cerebrum (16-day-embryonic) and cerebellum (7-day-postnatal) within a few hours of administration. The inhibition was time-dependent and both cytosolic and mitochondrial thymidine kinases were affected. Under the same conditions, the activities of certain other enzymes concerned with DNA metabolism,viz., DNA polymerase, and acid and alkaline DNases were not inhibited. Further, the addition of hydroxyureain vitro had no effect on the activity of any of the enzymes studied. However, similar treatment given to 2-year-old rat failed to exert any inhibition on either the mitochondrial or soluble thymidine kinase activities in grey and white matter regions of cerebrum and cerebellum. It is inferred that hydroxyurea, apart from its already known effect on ribonucleotide reductase of replicating cells, also affects thymidine kinase.  相似文献   

2.
In vivo protein synthesis rates in various brain regions (cerebral cortex, cerebellum, hippocampus, hypothalamus, and striatum) of 4-, 12-, and 24-month-old rats were examined after injection of a flooding dose of labeled valine. The incorporation of labeled valine into proteins of mitochondrial, microsomal, and cytosolic fractions from cerebral cortex and cerebellum was also measured. At all ages examined, the incorporation rate was 0.5% per hour in cerebral cortex, cerebellum, hippocampus, and hypothalamus and 0.4% per hour in striatum. Of the subcellular fractions examined, the microsomal proteins were synthesized at the highest rate, followed by cytosolic and mitochondrial proteins. The results obtained indicate that the average synthesis rate of proteins in the various brain regions and subcellular fractions examined is fairly constant and is not significantly altered in the 4 to 24-month period of life of rats.A preliminary report of these results was previously presented at: WFN-ESN Joint Meeting on: Cerebral Metabolism in Aging and Neurological Disorders, Baden, August 28–31, 1986.  相似文献   

3.
The structural genes for human galactokinase (GALK) and the human cytosolic form of thymidine kinase (TK1) are located on 17q21–q22. These two loci are tightly linked, and studies on Chinese hamster cell lines have shown that the expression of TK1 and GALK genes may alter simultaneously. We investigated the possibility of a dependent mutation of TK1 and GALK genes in cultured fibroblasts obtained from two patients homozygous for the GALKG-deficient gene. Since we showed that the TK1 level varies as a function of the passage and the growth rate of a given strain, our experiments were performed on nonstored skin fibroblasts, between the third and the fifth passage for both controls and patients. We found that TK1 levels in GALK-deficient cells were almost 75% of those observed in control strains with a similar growth rate. Previous results in the literature have shown a pronounced decrease in TK1 activity in three GALK-deficient fibroblastic strains. We suggest that these disparities of TK1 levels in GALK-deficient fibroblasts may be related either to genetic heterogeneity of GALK deficiency or to differences in culture conditions. This work was supported in part by grants from La CNAMTS and l’Université de Paris-Sud (AI 86 10).  相似文献   

4.
Human thymidine kinase 2 (TK2) is critical for the nucleotide salvage pathway and phosphorylation of nucleoside analog prodrugs in vivo; however, it remains poorly studied because of difficulties in expressing it heterologously. TK2 is strictly pyrimidine-specific, whereas its phylogenetic relative, the Drosophila melanogaster deoxyribonucleoside kinase (DmdNK), shows higher activity and broader specificity towards both pyrimidines and purines. These differences are counterintuitive, as only two of 29 active site residues differ in the two enzymes: F80 and M118 in DmdNK are L78 and L116 in TK2. In addition to reporting an optimized protocol for the expression and purification of TK2, we have used site-directed mutagenesis to introduce the DmdNK-like amino acids into TK2, and characterized the three resulting enzymes (L78F-TK2, L116M-TK2, and L78F/L116M-TK2). These mutations improve the K(M) for thymidine, increasing the catalytic activity of L78F/L116M-TK2 4.4-fold, yet leaving the activity for deoxycytidine or the purine nucleosides unchanged.  相似文献   

5.
6.
2,3-Dihydroxy-quinoxaline, a small molecule that promotes ATPase catalytic activity of Herpes Simplex Virus thymidine kinase (HSV-TK), was identified by virtual screening. This compound competitively inhibited HSV-TK catalyzed phosphorylation of acyclovir with Ki = 250 μM (95% CI: 106–405 μM) and dose-dependently increased the rate of the ATP hydrolysis with KM = 112 μM (95% CI: 28–195 μM). The kinetic scheme consistent with this experimental data is proposed.  相似文献   

7.
The effect of chronic administration of lithium on the concentration of biogenic amines and some of their metabolites in striatum, hippocampus, hypothalamus, pons-medulla and parietal cortex of rat were studied. Longterm lithium treatment modifies significantly the content of indoleamines in striatum and hypothalamus with minor changes in other structures. Catecholamine levels change after the treatment in striatum, hypothalamus, pons-medulla and parietal cortex. These results indicate that lithium treatment at therapeutic doses selectively modifies the catecholamine and indoleamine contents in discrete areas of the brain.  相似文献   

8.
9.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

10.
Various stages of pegs, cotyledons and embryonic axes from maturing peanut fruits were examined for their ability to phosphorylate thymidine and uridine. Highest specific activities during peg elongation were found just prior to increases in endosperm nuclei and embryo cell numbers. In the developing cotyledons and axes, the net kinase activities of crude extracts reached a maximum 1–2 weeks before maximal RNA and DNA contents were attained. An exception was the apparent lack of any relationship between uridine kinase activities and RNA levels in developing embryonic axes. The present results support the observation that peanut axes are devoid of thymidine and uridine kinases during the first 24 hr of germination, as fully developed fruits had very low specific activities for both of these phosphate transferases.  相似文献   

11.
Summary The two thymidine kinases, TK 1 and TK 2, found in phytohemagglutinin-stimulated human lymphocytes and the thymidine kinase, TK 2N, found in unstimulated human lymphocytes were purified and characterized. All three kinases had molecular weights between 70000 and 75000 which increased to 170000–200000 in the presence of 2 mM ATP.Studies on the kinetic properties of the enzymes with thymidine and ATP as the substrates and dTTP as the inhibitor showed clear differences between TK 1 and TK 2, but a close similarity between TK 2 and TK 2N. With thymidine as the variable substrate, TK 1 showed Michaelis-Menten kinetics, whereas TK 2 and TK 2N showed characteristic biphasic kinetics. With ATP as the variable substrate, all three enzymes showed positive cooperative kinetics, but TK 2 and TK 2N lost the cooperativity in the presence of dTTP. The results from inhibition studies showed, that dTTP was a cooperative inhibitor of TK 1 but a non-cooperative inhibitor of TK 2 and TK 2N.  相似文献   

12.
13.
Herpes Simplex Virus type 1 (HSV-1) thymidine kinase (TK) is currently the most widely used suicide agent for gene therapy of cancer. Tumor cells that express HSV-1 thymidine kinase are rendered sensitive to prodrugs due to preferential phosphorylation by this enzyme. Although ganciclovir (GCV) is the prodrug of choice for use with TK, this approach is limited in part by the toxicity of this prodrug. From a random mutagenesis library, seven thymidine kinase variants containing multiple amino acid substitutions were identified on the basis of activity towards ganciclovir and acyclovir based on negative selection in Escherichia coli. Using a novel affinity chromatography column, three mutant enzymes and the wild-type TK were purified to homogeneity and their kinetic parameters for thymidine, ganciclovir, and acyclovir determined. With ganciclovir as the substrate, one mutant (mutant SR39) demonstrated a 14-fold decrease in K(m) compared to the wild-type enzyme. The most dramatic change is displayed by mutant SR26, with a 124-fold decrease in K(m) with acyclovir as the substrate. Such new "prodrug kinases" could provide benefit to ablative gene therapy by now making it feasible to use the relatively nontoxic acyclovir at nanomolar concentrations or ganciclovir at lower, less immunosuppressive doses.  相似文献   

14.
Early discover of risk progression of invisible carcinomas is important for a prerequisite successful treatment. Here, we investigated whether concentration of human thymidine kinase 1 (HTK1) discover invisible malignant human tumours. The HTK1 concentration of tumour cellular based on HTK1 IgY-polyclonal-antibody (HTK1-IgY-pAb) was determined by using a novel automatic chemiluminescence analyser with sandwich biotin-streptavidin (SBSA) platform. Minimum number of cells able to be detected by this technology used cells with low and high concentration of HTK1. The limit visibility by tumour imaging is approximately 1 mm in diameter, corresponding to approximately 109 cells with a cell diameter of 1 µm. Based on a HTK1 standard curve and a molecular weight of HTK1 of 96 kD, the HTK1protein (HTK1p) concentration per cell was calculated to be 0.021 pg. Assuming 200 pg in total protein/cell, approximately 50 × 106 growing malignant cells in the body were calculated to releases HTK1 into 5-liter blood. A HTK1 values of 3.914, 0.435 and 0.009 pmol/L corresponds to 10 × 105, 2 × 105 and 1 × 105 growing malignant cells, respectively. The lowest detectable sensitivity of HTK1 is 0.009 pmol/L in 1 × 105 growing malignant cells and 0.01 pmol/L in blood serum, detectable in health screening. Comparing the novel automatic chemiluminescence analyser with the original ECL dot-blot assay using serum HTK1p (health screening, n = 265) showed high correlation (r = 0.8743, P < .000). In conclusion, the novel automatic chemiluminescence analyser with SBSA platform is a reliable method with high accuracy to determine carcinoma invisible.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC) are source of emerging infectious disease in India. Escherichia coli O157:H7 is an EHEC strain showing multiple antibiotic resistances and the cause of infantile diarrhea and hemolytic uremic syndrome worldwide. A novel strategy to counteract multiple antibiotic resistant organisms is to design drugs which specifically target metabolic pathways such as thiamine biosynthetic pathways found exclusively in prokaryotes. Homology modeling was used for model building of a terminal thiamine biosynthesis enzyme phosphoryl thymidine kinase (Thi E) using Geno3D, Swiss Model and Modeller. The best model was selected based on overall stereochemical quality. The potential ligand binding sites in the model were identified by CASTp server. The validated theoretical model of the 3D structure of the thiE protein of E. coli O157:H7 was predicted using a thiamine phosphate pyrophosphatase from Pyrococcus furiosus (PDB ID: 1X13_A) as template. The active pockets of ligand binding sites in the enzyme were identified. In this study, phosphoryl thymidine kinase (thi E), a terminal enzyme in the thiamine biosynthesis pathway in the pathogen has been modeled to be used in future as a potential drug target by the design of suitable inhibitors.  相似文献   

16.
Killary  A. M.  Lugo  T. G.  Fournier  R. E. K. 《Biochemical genetics》1984,22(3-4):201-213
The photosensitivity of bromodeoxyuridine (BrdU)-substituted cells is known to be markedly enhanced by the fluorochrome Hoechst 33258. Since the incorporation of BrdU into nucleic acids depends upon its prior phosphorylation via thymidine kinase (TK; EC 2.7.1.21), cells deficient in TK activity are refractory to photoinduced killing. These observations suggested that combined treatment with BrdU, Hoechst 33258, and visible light would constitute an efficient selective strategy for the recovery of TK mutant cells. In this report we describe a single-step selection protocol which reduced the survival of TK+ cells by a factor of 105 without affecting the viability of TK mutants. This procedure was used to isolate H4IIEC3-derived rat hepatoma cells deficient in TK activity. The properties of several TK hepatoma clones are discussed.The valuable technical assistance of J. M. Courvall, F. R. Parker, and M. M. Smith is acknowledged. These studies were supported by grant GM26449 from the National Institutes of Health. A.M.K. was supported by a postdoctoral fellowship from the American Cancer Society, California Division. T.G.L. is a Leukemia Society of America postdoctoral fellow. R.E.K.F. is the recipient of an American Cancer Society Faculty Research Award.  相似文献   

17.
A line of HeLa cells resistant to 5-bromo-2′-deoxyuridine (BUdR) was established by continuous culture in growth medium containing BUdR; during the selection period, BUdR concentrations, initially 15 μM, were gradually increased to 100 μM. Cells of a clone (HeLa/B5) established from this line were also resistant to 5-fluoro-2′-deoxyuridine (FUdR), but not to the free base, 5-fluorouracil. Although extracts of HeLa/B5 cells exhibited levels of thymidine kinase activity comparable to those of parental cells, rates of uptake of BUdR, FUdR, and thymidine into intact cells were much reduced. The kinetics of uptake of uridine and adenosine, nucleosides which appear to be transported independently of thymidine in HeLa cells, were similar for HeLa/B5 and the parental line (HeLa/0). Relative to thymidine uptake by HeLa/0 cells, that by HeLa/B5 cells was distinctly less sensitive to nitrobenzlthionosine (NBMPR), a specific inhibitor of nucleoside transport in various types of animal cells. Despite this difference in NBMPR sensitivity, both cell lines possessed the same number of high affinity NBMPR binding sites per mg cell protein. The altered kinetics of thymidine uptake and the NBMPR insensitivity of that function in HeLa/B5 cells suggest that resistance to BUdR is due to an altered thymidine transport mechanism.  相似文献   

18.
The effect of undernutrition on the activity of two key enzymes for DNA synthesis, namely DNA polymerase and thymidine kinase, in developing rat brain has been investigated. Both enzymatic activities in cerebral hemispheres and in brain stem are lower in undernourished animals than in controls at the 5th day after birth; succesively, from 5 to 30 days, they decrease in both groups of animals, however the decrease is less drastic in undernourished rats than in controls. At 30 days of age the specific activity of both enzymes is quite similar in the two groups of animals. In the cerebellum, DNA polymerase and thymidine kinase activities increase after 5 days of age showing a peak at around 9 days in controls and at about 13 days in undernourished animals, decreasing thereafter in both groups, although less drastically in undernourished animals, and reaching quite similar values at 30 days. The results obtained show that both enzymatic activities are impaired at 5 days and delayed thereafter, in agreement with the changes of DNA synthesis previously observed.  相似文献   

19.
Protein kinase B (also known as Akt) signaling regulates dopamine-mediated locomotor behaviors. Here the ability of cocaine to regulate Akt and glycogen synthase kinase 3 (GSK3) was studied. Rats were injected with cocaine or saline in a binge-pattern, which consisted of three daily injections of 15 mg/kg cocaine or 1 mL/kg saline spaced 1 h apart for 1, 3, or 14 days. Amygdala, nucleus accumbens, caudate putamen, and hippocampus tissues were dissected 30 min following the last injection and analyzed for phosphorylated and total Akt and GSK3(alpha and beta) protein levels using western blot analysis. Phosphorylation of Akt on the threonine-308 (Thr308) residue was significantly reduced in the nucleus accumbens and increased in the amygdala after 1 day of cocaine treatment; however, these effects were not accompanied by a significant decrease in GSK3 phosphorylation. Phosphorylation of Akt and GSK3 was significantly reduced after 14 days of cocaine administration, an effect that was only observed in the amygdala. Cocaine did not alter Akt or GSK3 phosphorylation in the caudate putamen or hippocampus. The findings in nucleus accumbens may reflect dopaminergic motor-stimulant activity caused by acute cocaine, whereas the effects in amygdala may be associated with changes in emotional state that occur after acute and chronic cocaine exposure.  相似文献   

20.
The potentials and limitations of negative-selection systems based on the human herpes simplex virus thymidine kinase type-1 (HSVtk) gene, which causes sensitivity to the nucleoside analog ganciclovir, were examined in tobacco as a model system. There were great differences between individual HSVtk+ transgenic plants in ganciclovir sensitivity. Inhibition of growth while under selection correlated with HSVtk-tianscnpt levels. Negative selection against HSVtk+ transformants at the level of Agrobacterium-mediated transformation using a ganciclo-vir/kanamycin double-selection medium (the positive selection marker neomycin phosphotransferase-II gene was in the transformation vector) resulted in a three- to six-fold reduction in the frequency of kanamycin-resistant shoots. The efficiency of negative selection in this case was limited due to the great variation in HSVtk expression, i.e., the frequently occurring transformants with low, or no, ganciclovir sensitivity escaping negative selection. Two independently constructed HSVtk genes showed the same variability of the phenotype in Nicotiana tabacum transformants. Distinct phenotypes, ranging from no regeneration through abnormal or delayed regeneration, were observed when leaf segments were placed on shoot-inducing medium supplemented with 10–6–10–3 M ganciclovir. The highest HSVtk mRNA and ganciclovir sensitivity levels were observed in plants which were transformed with the pSLJ882 chimeric construct. The pSLJ882 plant expression vector carried the coding sequence of HSVtk, whereas plasmid pCX305.1 carried an HSVtk construct retaining the untranslated 5 leader and viral 3 regions. The pCX305.1 transformants showed, at most, a delayed formation of shoots with thin stems and very narrow leaves. Ganciclovir sensitivity showed typical Mendelian segregation. A gene-dosage effect was also seen at the seedling level in the progeny of two transgenic lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号