首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide has been implicated in mechanisms mediating nerve-evoked vasodilatory and secretory responses in salivary glands. In the present study, the occurrence and distribution of nitric oxide synthase (NOS)-immunoreactive nerves in ferret and rat salivary glands were investigated using immunocytochemistry with rabbit and sheep NOS antisera, and using NADPH-diaphorase enzyme histochemistry. In the parotid, submandibular and sublingual glands of the rat and the ferret, NOS-immunoreactive varicose terminals encircled acini and arteries of various sizes. In the ferret, collecting ducts were also supplied with NOS-immunoreactive fibres. In the rat, only the granular ducts of the submandibular gland were supplied with such fibres. The NOS-immunoreactive innervation of acinar cells was more abundant in the rat than in the ferret, whereas the opposite was true for the innervation of blood vessels. No NOS immunoreactivity was observed in the vascular endothelium. In both species, NOS-positive ganglionic cell bodies were found in the hilar regions of the submandibular and sublingual glands, whereas none could be detected in the parotid glands. NADPH-diaphorase reactivity had the same neuronal distribution as NOS immunoreactivity and, in addition, NADPH-diaphorase reactivity was expressed in ductal epithelium. Neither sympathetic denervation (by removal of the superior cervical ganglion) nor treatment with the sensory neurotoxin capsaicin reduced the NOS-immunoreactive innervation of the parotid gland. However, parasympathetic denervation (by cutting the auriculo-temporal nerve) caused an almost total disappearance of the NOS-immunoreactive innervation. The present findings provide a morphological background to the suggested role of nitric oxide in parasympathetic secretory and vascular responses of salivary glands. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

2.
The aim of this study was to investigate the distribution of nitric oxide synthase (NOS)-containing nerve cells in the gastrointestinal tract of a reptile and to compare it with the pattern in other vertebrate classes. In the estuarine crocodile, Crocodylus porosus, NOS-positive nerve cell bodies and fibres were found in all regions of the gut examined. Most myenteric microganglia contained one or several NOS-immunoreactive neurons together with unlabelled neurons. The majority of the neurons were multipolar, ranging from 10 to 25 microns in diameter. Both the circular and the longitudinal muscle layers were innervated by NOS-immunoreactive nerve fibres, which mostly ran parallel to the muscle fibres. In addition, small blood vessels in the submucosa and on the serosal surface of the gut were innervated by NOS-immunoreactive fibres. Double labelling with antisera to NOS and vasoactive intestinal peptide (VIP) revealed three neuronal subpopulations. A small proportion of the NOS-immunoreactive cells also contained immunoreactivity to VIP while a majority of the VIP-immunoreactive cells were NOS immunoreactive. There were more nerve fibres showing VIP immunoreactivity than fibres with NOS immunoreactivity, although most of the latter also contained immunoreactivity to VIP. VIP-immunoreactive fibres often surrounded the NOS-immunoreactive nerve cells. These results suggest that neuronally released nitric oxide is likely to be involved in the control of gastrointestinal motility in the crocodile as in most other vertebrate species.  相似文献   

3.
Although neurons containing neuronal nitric oxide synthase (NOS) are abundant in the myenteric plexus of the small intestine of all mammalian species examined to date, NOS-containing neurons are sparse in the submucous plexus, and there does not appear to be an innervation of the mucosa by nerve fibres containing NOS. In this study, we used immunohistochemical techniques to examine the presence of neuronal NOS in the mouse intestine during development. At embryonic day 18 and postnatal day 0 (P0), about 50% of the neurons in the submucous plexus of the small intestine showed strong immunoreactivity to NOS, and NOS-immunoreactive nerve fibres were present in the mucosa. By P7, there was a gradation in the intensity of NOS immunostaining exhibited by submucosal neurons, varying from intense to extremely weak. During subsequent development, the proportion of submucous neurons showing NOS immunoreactivity decreased, and immunoreactive nerve fibres were no longer observed in the mucosa. In adult mice, NOS neurons comprised only 3% of neurons in the submucous plexus, which is significantly less than at P0. In contrast to the submucous plexus, the percentage of neurons that showed NOS immunoreactivity in the myenteric plexus did not change significantly during development.  相似文献   

4.
The relationship between nitric oxide synthase (NOS)- and galanin-immunoreactive nerve terminals and the origin of NOS-immunoreactive nerve terminals on the motor endplates in the striated muscles of the rat esophagus was investigated. Double immunohistochemical staining revealed a dual innervation of motor endplates by calcitonin gene-related peptide (CGRP)-immunoreactive axons and by axons that were immunoreactive for both NOS and galanin. On average, 91% of NOS terminals were galanin immunoreactive. NOS-immunoreactive fibers were revealed at 67% of endplates, identified by the presence of CGRP terminals. The left vagus and superior laryngeal nerve were cut and 15 days allowed for terminals to degenerate. This caused a significant loss of CGRP fibers, but did not affect the density of innervation of the striated muscle by NOS-immunoreactive fibers. Thus the NOS/galanin fibers are deduced to originate from ganglia in the esophageal wall. This is supported by our observation of numerous NOS-immunoreactive nerve cell bodies in the myenteric ganglia of the esophagus, 74% of which were galanin immunoreactive. There were no CGRP-immunoreactive nerve cell bodies in the wall of the esophagus.  相似文献   

5.
In the distal parts of the urinary tract, nerves containing nitric oxide (NO) are either postganglionic parasympathetic nerves, with cell bodies in the major pelvic ganglia, or sensory nerves with cell bodies in the lumbosacral dorsal root ganglia. We have used indirect immunohistochemical techniques to examine the distribution and regional variation of nerves immunoreactive for neuronal nitric oxide synthase (NOS) in the urinary bladder, distal ureter and in neurons in lumbosacral dorsal root ganglia (L1-L2 & L6-S1) of young adult (3 months) and aged (24 months) male rats. Semi-quantitative estimations of nerve densities were made of NOS fibres innervating the dome, body and base of the urinary bladder and distal ureter. Quantitative studies were also used to examine the effects of age on the percentage of dorsal root ganglion neurons immunoreactive for NOS. The dome and the body regions, in both age groups, contained no NOS-immunoreactive axons. The bladder base and distal ureter in young adults showed sparse to moderate numbers of fibres immunoreactive to NOS within the urothelium and in the subepithelium and muscle coat. In the aged rat there were slight reductions in the densities of NOS-immunoreactive nerves in all three regions. In the lumbosacral dorsal root ganglia, the percentage of NOS-immunoreactive neuronal profiles showed a significant reduction from 4.6 +/- 0.2% in young adult to 2.7 +/- 0.2% (means +/- S.E.M) in aged rats. These findings suggest that the effects of NO on the bladder and distal ureteric musculature and also its expression in dorsal root ganglion neurons are affected in aged rats and that the micturition reflex may be perturbed as a result.  相似文献   

6.
Nitric oxide (NO) acts as an intercellular messenger molecule in the nervous system. In the adrenal gland sympathetic preganglionic fibers innervating the medulla, as well as intrinsic neural ganglion cells, contain nitric oxide synthase (NOS). Nitric oxide stimulates the soluble enzyme guanylate cyclase forming cyclic GMP (cGMP). Using sodium nitroprusside (SNP) as nitric oxide donor we have studied the putative target cells for nitric oxide in the rat adrenal gland, both in vivo and in vitro. The guinea pig and a few mouse adrenal glands were studied after SNP perfusion for comparison. Our results show that after vascular perfusion with a high concentration (3 mM) of SNP both noradrenaline and adrenaline chromaffin cells express cGMP-like immunoreactivity in all three species. After incubation of rat adrenal slices with SNP primarily the noradrenaline chromaffin cells are cGMP-positive. In contrast, detectable levels of cGMP-like immunoreactivity were not found in neuronal ganglion cells. In the adrenal cortex cGMP-like immunoreactivity was seen in blood vessel walls, in small cells with processes forming a reticular network, at least partly presumably representing endothelial cells, as well as in some presumable nerve terminals. These findings support the view that chromaffin cells, especially the noradrenergic ones and blood vessels, are targets for nitric oxide in the adrenal gland.  相似文献   

7.
Nitric oxide (NO) is generated intracellularly from L-arginine by the action of the enzyme nitric oxide synthase (NOS). The present investigation demonstrates immunoreactivity against NOS and nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase activity in nerve cells and fibers of the reproductive system of the female mouse. The density of nerve fibers staining for NOS varied among different genital organs. The ovary and Fallopian tube were devoid of NOS-positive nerves. The uterine horns received sparse innervation by NOS-containing nerve fibers. The most abundant NOergic innervation was found in the uterine cervix and vagina, where the nerve fibers ran parallel to the smooth muscle bundles and beneath the epithelium; they also accompanied intramural blood vessels. The vaginal muscular wall contained single or groups of NOS-reactive nerve cells. Clusters of NOS-containing neurons were located in Frankenhäuser's ganglion at the cervico-vaginal junction. NO may therefore act as a transmitter in the nervous control of the female reproductive tract.  相似文献   

8.
The distribution and origin of substance P (SP) and neurokinin A (NKA) were studied in rat in the anterior buccal glands, which are minor mucous salivary glands. Indirect immunofluorescence staining showed moderate SP and NKA innervation of salivary acini and interlobular ducts, whereas blood vessels were more sparsely innervated, and there were few nerve fibers in the stroma and around the intralobular ducts. About 10%–20% of the trigeminal ganglion cells showed equally strong immunoreactivity to both SP and NKA. Unilateral denervation of the branches of the trigeminal nerve caused complete disappearance of the stromal fibers and greatly reduced the number of all other SP-immunoreactive and NKA-immunoreactive nerve fibers. In the superior cervical ganglia, SP and NKA immunoreactivity was restricted to small intensely fluorescent cells; SP and NKA immunoreactivity was absent from principal ganglionic cells, and thus sympathectomy had no any effect on the number or distribution of fibers immunoreactive for SP and NKA in the anterior buccal glands. The fibers remaining after sensory denervation could have been of parasympathetic origin, indicating a dual origin of nerves immunoreactive for SP and NKA in these glands. The present data demonstrate that the major part of the glandular SP and NKA innervation in the minor salivary glands derives from the trigeminal ganglia. The distribution of the peripheral nerve fibers indicates that they may play a role in the delivery of potent neuropeptides involved in the vascular, secretory, and motor (myoepithelial cells) functions of salivary glands.  相似文献   

9.
 The presence of NADPH diaphorase staining was compared with the immunohistochemical localization of four NADPH-dependent enzymes – neuronal (type I), inducible (type II), and endothelial (type III) nitric oxide synthase (NOS) and cytochrome P450 reductase. Cell types that were immunoreactive for the NADPH-dependent enzymes were also stained for NADPH diaphorase, suggesting that endothelial and neuronal NOS and cytochrome P450 reductase all show NADPH diaphorase activity in formaldehyde-fixed tissue. However, in some tissues, the presence of NADPH diaphorase staining did not coincide with the presence of any of the NADPH-dependent enzymes we examined. In vascular endothelial cells, the punctate pattern of staining observed with NADPH diaphorase histochemistry was identical to that seen following immunohistochemistry using antibodies to endothelial NOS. In enteric and pancreatic neurons and in skeletal muscle, the presence of NADPH diaphorase staining correlated with the presence of neuronal NOS. In the liver, sebaceous glands of the skin, ciliated epithelium, and a subpopulation of the cells in the subserosal glands of the trachea, zona glomerulosa of the adrenal cortex, and epithelial cells of the lacrimal and salivary glands, the presence of NADPH diaphorase staining coincided with the presence of cytochrome P450 reductase immunoreactivity. In epithelial cells of the renal tubules and zona fasciculata and zona reticularis of the adrenal cortex, NADPH diaphorase staining was observed that did not coincide with the presence of any of the enzymes. Inducible NOS was not observed in any tissue. Thus, while tissues that demonstrate immunoreactivity for neuronal and endothelial NOS also stain positively for NADPH diaphorase activity, the presence of NADPH diaphorase staining does not reliably or specifically indicate the presence of one or more NOS isoforms. Accepted: 2 September 1996  相似文献   

10.
Summary The localization of the proenkephalin A-derived octapeptide, Met5-enkephalin-Arg6-Gly7-Leu8 (MEAGL), was studied in the major salivary glands of Sprague-Dawley and Wistar rats with the indirect immunofluorescence method. MEAGL-immunoreactive nerve fibers were found around the acini, along intra-and interlobular salivary ducts and in close contact with blood vessels. In the parotid and submandibular glands tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibers around the acini, in association with intra- and interlobular salivary ducts and around blood vessels, while in the sublingual gland TH-immunoreactive nerve fibers were only seen around blood vessels. Parasympathetic neurons in submandibular ganglia contained MEAGL immunoreactivity. Moderate TH immunoreactivity was seen in some neurons of the submandibular ganglia. A subpopulation of sympathetic principal neurons in the superior cervical ganglion were immunoreactive for both MEAGL and TH. In the trigeminal ganglion, no MEAGL-immunoreactive sensory neurons or nerve fibers were observed. Superior cervical ganglionectomies resulted in a complete disappearance of TH-immunoreactive nerve fibers, while MEAGL-immunoreative nerve fibers were still present in the glands. The presence of MEAGL immunoreactivity in neurons of both sympathetic superior cervical ganglia and parasympathetic submandibular ganglia and the results of superior cervical ganglionectomies suggest, that MEAGL-immunoreactive nerve fibers in the major salivary glands of the rat have both sympathetic and parasympathetic origin.  相似文献   

11.
VIP-like immunoreactivity was found in rat, cat and human salivary glands at a concentration of 17.0 – 29.3 pmol/g of tissue. The immunoreactivity was localised by immunocytochemistry in beaded nerve fibres which occurred in association with secretory acini, ducts, blood vessels and larger nerves. In salivary glands VIP may act as a neurotransmitter or neuromodulator involved in the regulation of blood flow and in the composition and volume of saliva.  相似文献   

12.
We colocalized nitric oxide synthase (NOS) activity in epithelial cells that surround the salivary gland duct in female Dermacentor variabilis with NADPH diaphorase histochemistry and immunohistochemistry using a polyclonal anti-endothelial NOS. Using size-exclusion chromatography, a fraction with a molecular mass of about 185 kDa that had diaphorase activity was eluted from tick salivary gland homogenate. This fraction converted arginine to citrulline with the production of nitric oxide (NO), which was detected by using electron spin resonance spectroscopy. The complete activity of the diaphorase fraction was dependent on NADPH, FAD, tetrahydrobiopterin, calmodulin, (CaM), and Ca(2+), but was not dependent on dithiothreitol. The arginine analog N(G)-monomethyl-L-arginine inhibited the activity of this fraction. NO and arginine activated soluble guanylate cyclase to produce cGMP in dopamine-stimulated isolated salivary glands. Dopamine-stimulated isolated salivary glands treated with tick saline containing either EDTA, the NOS inhibitor N(G)-nitro-L-arginine methyl ester, or the calcium/CaM binding inhibitor W-7 showed no increase in cGMP. The NO donor sodium nitroprusside significantly increased cGMP levels in unstimulated isolated salivary glands. A possible function for NO in salivation by this ixodid tick is discussed.  相似文献   

13.
In this study, we wished to clarify the distribution and co-localization of nitric oxide synthase and NADPH-diaphorase (NADPH-d) in nerve cells, nerve fibres and parenchymal cells in exocrine and endocrine pancreas, and to assess the influence of fixation on the staining pattern obtained. For this purpose, we applied nitric oxide synthase immunocytochemistry and NADPH-d histochemistry to rat and human pancreas under different fixation conditions. Antibodies to neuronal and endothelial nitric oxide synthase were similarly applied. We found complete co-localization of neuronal nitric oxide synthase and NADPH-d in ganglion cells, and in nerve fibres around acini, excretory ducts, blood vessels and in islets of Langerhans of rat and human pancreas. Immunoreactivity for endothelial nitric oxide synthase was co-localized with NADPH-d in endothelial cells. However, in NADPH-d reactive islet and ductal epithelial cells we could detect neither brain nor endothelial nitric oxide synthase immunoreactivity with any fixation protocol applied. There were marked differences in NADPH-d staining of both neurons and parenchymal cells under different fixation conditions. These results indicate the existence of different types of NADPH-d, which are associated or not associated with nitric oxide synthase(s), and which are differently influenced by various fixation procedures in rat and human pancreas.  相似文献   

14.
Summary In rats, the distribution of nerve structures staining for NADPH-diaphorase, and showing immunoreactivities for nitric oxide synthase (NOS), tyrosine hydroxylase and various neuropeptides was studied in sensory ganglia (dorsal root, nodose and trigeminal ganglia), in sympathetic ganglia (superior cervical, stellate, coeliac-superior and inferior mesenteric ganglia), parasympathetic ganglia (sphenopalatine, submandibular, sublingual and otic ganglia), and in the mixed parasympathetic/ sympathetic ganglia (major pelvic ganglia). The coincidence of neuronal cell bodies with strong NOS-immunoreactivity and strong NADPH diaphorase reactivity was almost total. The relative proportions of NOS-immunoreactive nerve cell bodies were largest in parasympathetic ganglia and major pelvic ganglia followed by sensory ganglia. In sympathetic ganglia no NOS-immunoreactive neuronal cell bodies could be detected. In parasympathetic and major pelvic ganglia, there was a very significant neuronal co-localization of immunoreactivities for NOS and vasoactive intestinal polypeptide (VIP). This was almost total in major pelvic ganglia, in which NOS-/VIP-immunoreactive nerve cell bodies were separate from sympathetic (tyrosine hydroxylase-/neuropeptide Y-immunoreactive), suggesting that NOS-/VIP-immuno-reactive neurons might also be parasympathetic.  相似文献   

15.
Intrinsic nitric oxide synthase (NOS)-containing nerve cells and fibers were studied in the wall of the pylorus of cat at the ultrastructural level using ABC immunocytochemistry. Large numbers of NOS immunoreactive (IR) nerve cell bodies were observed in the myenteric and in the submucous plexuses, and few in the tunica propria mucosa. The NOS IR nerve fibers were most abundant in the inner circular muscle layer and in the tunica mucosa. They were found in very close vicinity to the smooth muscle cells of the inner circular muscular layer as well as to the blood vessels and the epithelial lining. The gap between the NOS IR nerve fibers and the membrane of the target cells was 20 to 250nm. Apparent synaptic contacts were observed between the IR nerve fibers and unlabelled nerve processes and other non IR nerve cell body. It is confirmed that NO might influence smooth muscle cell activity, regulate blood flow and modulate the function of the epithelial cells. Our ultrastructural study suggested that some of the NOS containing neurons belong to the intrinsic interneurons and have a regulatory effect on other intrinsic nerve elements involved in local neuronal reflexes.  相似文献   

16.
In the current study, we aimed at investigating the presence of nitric oxide synthase (NOS) positive nerve fibers in rat meibomian glands (MGs) at various stages of development. There is good evidence to suggest that nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) is a surrogate for neuronal nitric oxide synthase (NOS). Sections of the central, upper eyelids of Wistar rats were processed histochemically for NADPH-d to investigate the presence and distribution of NOS-positive nerve fibers at the following time points: day 1 and weeks 1, 2 and 3 post partum, and in adult controls. At day 1, MG acini were lightly stained and located at a distance from the mucosal border. Vessels were accompanied by intensely stained NADPH-d positive nerve fibers. At the week 1 time point, both the vessels and the NADPH-d positive fibers were still present, but less numerous. MGs were now closer to the mucosa, so that the submucosa was thinner. The acini were mostly pale but occasionally darker. At week 3, there were fewer blood vessels in both the submucosa and within the septa. Darker acini were more common than lightly stained acini. NADPH-d positive dots were observed in the vicinity of the MGs. At the week 3 time point, MGs were adjacent to the mucosal border and stained more intensely than at earlier times; almost all acini were stained. The microscopic appearances were almost identical with those of adult palpebra. Submucosal and septal blood vessels and NADPH-d positive nerve fibers were less numerous. NADPH-d histochemical staining confirmed differences in the density of stained nerve fibers at different developmental stages. The greatest density of NADPH-d -positive nerve fibers occurred in 1-day-old rats whereas they were less numerous in adult rat eyelids. Nerves innervating MGs utilize nitric oxide (NO) as a neurotransmitter mostly in early developmental stages and this need thereafter decreases and stabilizes at 3 weeks postnatally.  相似文献   

17.
The nitrergic innervation of the sphincter of Oddi (SO) and duodenum in the Australian brush-tailed possum and the possible association of this innervation with the neuropeptide vasoactive intestinal polypeptide (VIP) were investigated by using immunohistochemical localisation of nitric oxide synthase (NOS) and VIP, together with the general neuronal marker, protein gene product 9.5 (PGP9.5). Whole-mount preparations of the duodenum and attached SO without the mucosa, submucosa and circular muscle (n=12) were double- and triple-labelled. The density of myenteric nerve cell bodies of the SO in the more distal region (duodenal end) was significantly higher than that in the more proximal region. In the SO, approximately 50% of all cells were NOS-immunoreactive (IR), with 27% of the NOS-IR cells being VIP-IR. Within the duodenal myenteric plexus, NOS immunoreactivity was present in about 25% of all neurons, with 27% of these NOS-IR neurons also being VIP-IR, a similar proportion to that in the SO. Varicose nerve fibres with NOS and VIP immunoreactivity were present within the myenteric and submucous plexuses of the SO and duodenum, and in the circular and longitudinal muscle layers. The NOS-positive cells within both the SO and duodenum were unipolar, displaying a typical Dogiel type I morphology. The myenteric plexuses of the SO and duodenum were in direct continuity, with many interconnecting nerve trunks, some of which showed NOS and VIP immunoreactivity. Thus, the possum possesses an extensive NOS innervation of the SO and duodenum, with a significantly higher proportion of NOS-IR neurons within the SO, a subset of which contains VIP.  相似文献   

18.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.  相似文献   

19.
The neurochemistry of intracardiac neurons in whole-mount preparations of the intrinsic ganglia was investigated. This technique allowed the study of the morphology of the ganglionated nerve plexus found within the atria as well as of individual neurons. Intracardiac ganglia formed a ring-like plexus around the entry of the pulmonary veins and were interconnected by a series of fine nerve fibres. All intracardiac neurons contained immunoreactivity to PGP-9.5, choline acetyl transferase (ChAT) and neuropeptide Y (NPY). Two smaller subpopulations were immunoreactive to calbindin or nitric oxide synthase. Furthermore, a subpopulation (approximately 6%) of PGP-9.5/ChAT/NPY-immunoreactive cells lacking both calbindin and nitric oxide synthase (NOS) was surrounded by pericellular baskets immunoreactive to ChAT and calbindin. Vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP), pituitary adenylate cyclase-activated peptide (PACAP), substance P and tyrosine hydroxylase (TH) immunoreactivity was observed in nerve fibres within the ganglion, but never in neuronal somata. Furthermore, immunoreactivity for NPY was not observed in pericellular baskets surrounding intracardiac neurons, despite being present in all intrinsic neuronal cell bodies. Taken together, the results of this study indicate a moderate level of chemical diversity within the intracardiac neurons of the rat. Such chemical diversity may reflect functional specialisation of neurons in the intracardiac ganglia.This work was supported by a grant-in-aid (G00M0670) from the National Heart Foundation of Australia  相似文献   

20.
Previous studies have demonstrated that neurofilament proteins are expressed by type II neurons in the enteric plexuses of a range of species from mouse to human. However, two previous studies have failed to reveal this association in the guinea-pig. Furthermore, immunohistochemistry for neurofilaments has revealed neurons with a single axon and spiny dendrites in human and pig but this morphology has not been described in the guinea-pig or other species. We have used antibodies against high- and medium-weight neurofilament proteins (NF-H and NF-M) to re-examine enteric neurons in the guinea-pig. NF-H immunoreactivity occurred in all type II neurons (identified by their IB4 binding) but these neurons were never NF-M-immunoreactive. On the other hand, 17% of myenteric neurons expressed NF-M. Many of these were uni-axonal neurons with spiny dendrites and nitric oxide synthase (NOS) immunoreactivity. NOS immunoreactivity occurred in surface expansions of the cytoplasm that did not contain neurofilament immunoreactivity. Thus, because of their NOS immunoreactivity, spiny neurons had the appearance of type I neurons. This indicates that the apparent morphologies and the morphological classifications of these neurons are dependent on the methods used to reveal them. We conclude that spiny type I NOS-immunoreactive neurons have similar morphologies in human and guinea-pig and that many of these are inhibitory motor neurons. Both type II and neuropeptide-Y-immunoreactive neurons in the submucosal ganglia exhibit NF-H immunoreactivity. NF-M has been observed in nerve fibres, but not in nerve cell bodies, in the submucosa. This work was supported by a grant from the National Health and Medical Council of Australia (grant number 400020).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号