首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The Herpes simplex virus type I origin binding protein (OBP) is a sequence-specific DNA-binding protein and a dimeric DNA helicase encoded by the UL9 gene. It is required for the activation of the viral origin of DNA replication oriS. Here we demonstrate that the linear double-stranded form of oriS can be converted by heat treatment to a stable novel conformation referred to as oriS*. Studies using S1 nuclease suggest that oriS* consists of a central hairpin with an AT-rich sequence in the loop. Single-stranded oligonucleotides corresponding to the upper strand of oriS can adopt the same structure. OBP forms a stable complex with oriS*. We have identified structural features of oriS* recognized by OBP. The central oriS palindrome as well as sequences at the 5' side of the oriS palindrome were required for complex formation. Importantly, we found that mutations that have been shown to reduce oriS-dependent DNA replication also reduce the formation of the OBP-oriS* complex. We suggest that oriS* serves as an intermediate in the initiation of DNA replication providing the initiator protein with structural information for a selective and efficient assembly of the viral replication machinery.  相似文献   

2.
3.
4.
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.  相似文献   

5.
Heat shock proteins act as molecular chaperones, facilitating protein folding in cells of living organisms. Their role is particularly important in parasites because environmental changes associated with their life cycles place a strain on protein homoeostasis. Not surprisingly, some heat shock proteins are essential for the survival of the most virulent malaria parasite, Plasmodium falciparum . This justifies the need for a greater understanding of the specific roles and regulation of malarial heat shock proteins. Furthermore, heat shock proteins play a major role during invasion of the host by the parasite and mediate in malaria pathogenesis. The identification and development of inhibitor compounds of heat shock proteins has recently attracted attention. This is important, given the fact that traditional antimalarial drugs are increasingly failing, as a consequence of parasite increasing drug resistance. Heat shock protein 90 (Hsp90), Hsp70/Hsp40 partnerships and small heat shock proteins are major malaria drug targets. This review examines the structural and functional features of these proteins that render them ideal drug targets and the challenges of targeting these proteins towards malaria drug design. The major antimalarial compounds that have been used to inhibit heat shock proteins include the antibiotic, geldanamycin, deoxyspergualin and pyrimidinones. The proposed mechanisms of action of these molecules and the pathways they inhibit are discussed.  相似文献   

6.
We have recently identified a novel 53-kDa herpes simplex virus type 1 (HSV-1) protein encoded by, and in frame with, the 3' half of the UL9 open reading frame, designated OBPC (K. Baradaran, C. Dabrowski and P. A. Schaffer, J. Virol. 68:4251-4261, 1994). Here we show that OBPC is a nuclear protein synthesized at both early and late times postinfection. In gel-shift assays in vitro-synthesized OBPC bound to oriS site I DNA to form a complex identical in mobility to complex A, generated with infected cell extracts and site I DNA. OBPC inhibited both plaque formation and viral DNA replication in transient assays, consistent with its ability to bind to site I DNA and its limited ability to interact with other essential DNA replication proteins. These properties suggest that OBPC may play a role in the initiation, elongation, or packaging of viral DNA.  相似文献   

7.
8.
9.
Summary Heat shock proteins have been shown to be involved in many cellular processes in procaryotic and eucaryotic cells. Using an in vitro DNA replication assay, we show that DNA synthesis initiated at the chromosomal origin of replication of Escherichia coli (oriC) is considerably reduced in enzyme extracts isolated from cells bearing mutations in the dnaK and dnaJ genes, which code for heat shock proteins. Furthermore, unlike DNA synthesis in wild-type extracts, residual DNA synthesis in dnaK and dnaJ extracts is thermosensitive. Although thermosensitivity can be complemented by the addition of DnaK and DnaJ proteins, restoration of near wild-type replication levels requires supplementary quantities of purified DnaA protein. This key DNA synthesis initiator protein is shown to be adsorbed to DnaK affinity columns. These results suggest that at least one of the heat shock proteins, DnaK, exerts an effect on the initiation of DNA synthesis at the level of DnaA protein activity. However, our observation of normal oriC plasmid transformation ratios and concentrations in heat shock mutants at permissive temperatures would suggest that heat shock proteins play a role in DNA replication mainly at high temperatures or under other stressful growth conditions.  相似文献   

10.
Replication of herpes simplex virus takes place in the cell nucleus and is carried out by a replisome composed of six viral proteins: the UL30-UL42 DNA polymerase, the UL5-UL8-UL52 helicase-primase, and the UL29 single-stranded DNA-binding protein ICP8. The replisome is loaded on origins of replication by the UL9 initiator origin-binding protein. Virus replication is intimately coupled to recombination and repair, often performed by cellular proteins. Here, we review new significant developments: the three-dimensional structures for the DNA polymerase, the polymerase accessory factor, and the single-stranded DNA-binding protein; the reconstitution of a functional replisome in vitro; the elucidation of the mechanism for activation of origins of DNA replication; the identification of cellular proteins actively involved in or responding to viral DNA replication; and the elucidation of requirements for formation of replication foci in the nucleus and effects on protein localization.  相似文献   

11.
Binding of the P1-encoded protein RepA to the origin of P1 plasmid replication is essential for initiation of DNA replication and for autoregulatory repression of the repA promoter. Previous studies have shown defects in both initiation and repression in hosts lacking heat shock proteins DnaJ, DnaK, and GrpE and have suggested that these proteins play a role in the RepA-DNA binding required for initiation and repression. In this study, using in vivo dimethyl sulfate footprinting, we have confirmed the roles of the three heat shock proteins in promoting RepA binding to the origin. The defects in both activities could be suppressed by increasing the concentration of wild-type RepA over the physiological level. We also isolated RepA mutants that were effective initiators and repressors without requiring the heat shock proteins. These data suggest that the heat shock proteins facilitate both repression and initiation by promoting only the DNA-binding activity of RepA. In a similar plasmid, F, initiator mutants that confer heat shock protein independence for replication were also found, but they were defective for repression. We propose that the initiator binding involved in repression and the initiator binding involved in initiation are similar in P1 but different in F.  相似文献   

12.
棉花粉蚧热休克蛋白基因的鉴定   总被引:2,自引:0,他引:2  
热休克蛋白(heat shock proteins,Hsps)是生物体或细胞受到热胁迫后新合成的一类遗传上高度保守的蛋白,在昆虫应对外界环境因子胁迫时起着重要作用。为了系统研究棉花粉蚧Phenacoccus solenopsis Hsp基因家族,对棉花粉蚧转录组基因注释信息进行分析、获得目标序列,并应用NCBI上Blast X等软件进行比对、共鉴定出24条热激蛋白(Hsp)基因,包括3个Hsp90、8个Hsp70、2个Hsp60和11个s Hsp(small heat shock protein,s Hsp)基因。对棉花粉蚧与模式昆虫家蚕Bombyx mori、黑腹果蝇Drosophila melanogaster、赤拟谷盗Tribolium castaneum系统进化关系分析显示,昆虫的小分子量热休克蛋白s Hsp具有很强的种属特异性,Hsp70家族的保守性比s Hsp强。棉花粉蚧热激蛋白基因的鉴定为深入研究该虫Hsp与生长发育、抗逆境的相互关系奠定了基础。  相似文献   

13.
The UL9 protein of herpes simplex virus type 1 (HSV-1) binds specifically to the HSV-1 oriS and oriL origins of replication, and is a DNA helicase and DNA-dependent NTPase. In this study electron microscopy was used to investigate the binding of UL9 protein to DNA fragments containing oriS. In the absence of ATP, UL9 protein was observed to bind specifically to oriS as a dimer or pair of dimers, which bent the DNA by 35 degrees +/- 15 degrees and 86 degrees +/- 38 degrees respectively, and the DNA was deduced to make a straight line path through the protein complex. In the presence of 4 mM ATP, binding at oriS was enhanced 2-fold, DNA loops or stem-loops were extruded from the UL9 protein complex at oriS, and the DNA in them frequently appeared highly condensed into a tight rod. The stem-loops contained from a few hundred to over one thousand base pairs of DNA and in most, oriS was located at their apex, although in some, oriS was at a border. The DNA in the stem-loops could be stabilized by photocrosslinking, and when Escherichia coli SSB protein was added to the incubations, it bound the stem-loops strongly. Thus the DNA strands in the stem-loops exist in a partially paired, partially single-stranded state presumably making them available for ICP8 binding in vivo. These observations provide direct evidence for an origin specific unwinding by the HSV-1 UL9 protein and for the formation of a relatively stable four-stranded DNA in this process.  相似文献   

14.
Acclimation to environmental change can impose costs to organisms. One potential cost is the change in cell metabolism that follows a physiological response, e.g., high expression of heat shock proteins may alter specific activity of important enzymes. We examined the significance of this cost in a pair of Drosophila melanogaster lines transformed with additional copies of a gene that encodes the heat shock protein, Hsp70. Heat shock induces Hsp70 expression in all lines, but lines with extra copies produce much more Hsp70 than do excision control strains. The consequence of this supranormal Hsp70 expression is to reduce specific activity of both enzymes analyzed, adult alcohol dehydrogenase (ADH), which is heat sensitive, and lactate dehydrogenase, which is not. Strain differences were most pronounced under those conditions where Hsp70 expression was maximized, and not where the heat stress denatured proteins. That result supported the idea that Hsp70 expression is constrained evolutionarily by its tendency to bind nascent peptides when overabundant within the cell.  相似文献   

15.
Herpes simplex virus replicates its DNA within nuclear structures called replication compartments. In contrast, in cells in which viral DNA replication is inhibited, viral replication proteins localize to punctate structures called prereplicative sites. We have utilized viruses individually mutated in each of the seven essential replication genes to assess the function of each replication protein in the assembly of these proteins into prereplicative sites. We observed that four replication proteins, UL5, UL8 UL52, and UL9, are necessary for the localization of ICP8 (UL29) to prereplicative sites natural infection conditions. Likewise, four of the seven viral DNA replication proteins, UL5, UL52, UL9, and ICP8, are necessary for the localization of the viral DNA polymerase to prereplicative sites. On the basis of these results, we present a model for prereplicative site formation in infected cells in which the helicase-primase components (UL5, UL8, and UL52), the origin-binding protein (UL9), and the viral single-stranded DNA-binding protein (ICP8) assemble together to initiate the process. This is followed by the recruitment of the viral polymerase into the structures, a step facilitated by the polymerase accessory protein, UL42. Host cell factors can apparently substitute for some of these viral proteins under certain conditions, because the viral protein requirements for prereplicative site formation are reduced in transfected cells and in infected cells treated with drugs that inhibit DNA synthesis.  相似文献   

16.
Heat shock protein 40s (Hsp40s) and heat shock protein 70s (Hsp70s) form chaperone partnerships that are key components of cellular chaperone networks involved in facilitating the correct folding of a broad range of client proteins. While the Hsp40 family of proteins is highly diverse with multiple forms occurring in any particular cell or compartment, all its members are characterized by a J domain that directs their interaction with a partner Hsp70. Specific Hsp40-Hsp70 chaperone partnerships have been identified that are dedicated to the correct folding of distinct subsets of client proteins. The elucidation of the mechanism by which these specific Hsp40-Hsp70 partnerships are formed will greatly enhance our understanding of the way in which chaperone pathways are integrated into finely regulated protein folding networks. From in silico analyses, domain swapping and rational protein engineering experiments, evidence has accumulated that indicates that J domains contain key specificity determinants. This review will critically discuss the current understanding of the structural features of J domains that determine the specificity of interaction between Hsp40 proteins and their partner Hsp70s. We also propose a model in which the J domain is able to integrate specificity and chaperone activity.  相似文献   

17.
Heat shock proteins (Hsps) are a set of highly conserved proteins involved in cellular repair and protective mechanisms. They counter protein misfolding and aggregation that are characteristic features of neurodegenerative diseases. Hsps act co-operatively in disaggregation/refolding machines that assemble at sites of protein misfolding and aggregation. Members of the DNAJ (Hsp40) family act as “holdases” that detect and bind misfolded proteins, while members of the HSPA (Hsp70) family act as “foldases” that refold proteins to biologically active states. HSPH1 (Hsp105α) is an important additional member of the mammalian disaggregation/refolding machine that acts as a disaggregase to promote the dissociation of aggregated proteins. Components of a disaggregation/refolding machine were targeted to nuclear speckles after thermal stress in differentiated human neuronal SH-SY5Y cells, namely: HSPA1A (Hsp70-1), DNAJB1 (Hsp40-1), DNAJA1 (Hsp40-4), and HSPH1 (Hsp105α). Nuclear speckles are rich in RNA splicing factors, and heat shock disrupts RNA splicing which recovers after stressful stimuli. Interestingly, constitutively expressed HSPA8 (Hsc70) was also targeted to nuclear speckles after heat shock with elements of a disaggregation/refolding machine. Hence, neurons have the potential to rapidly assemble a disaggregation/refolding machine after cellular stress using constitutively expressed Hsc70 without the time lag needed for synthesis of stress-inducible Hsp70. Constitutive Hsc70 is abundant in neurons in the mammalian brain and has been proposed to play a role in pre-protecting neurons from cellular stress.  相似文献   

18.
Heat shock protein 70 (Hsp70) comprises proteins that have been reported to protect cells, tissues, and organisms against damage from a wide variety of stressful stimuli; however, little is known about whether Hsp70 protects against DNA damage. In this study, we investigated the relationship between Hsp70 expression and the levels of ultraviolet C (UVC)-induced DNA damage in A549 cells with normal, inhibited, and overexpressed Hsp70 levels. Hsp70 expression was inhibited by treatment with quercetin or overexpressed by transfection of plasmids harboring the hsp70 gene. The level of DNA damage was assessed by the comet assay. The results showed that the levels of DNA damage (shown as the percentage of comet cells) in A549 cells increased in all cells after exposure to an incident dose of 0, 10, 20, 40, and 80 J/m2 whether Hsp70 was inhibited or overexpressed. This response was dose dependent: a protection against UVC-induced DNA damage in cells with overexpressed Hsp70 was observed at UVC dose 20 J/m2 with a maximum at 40 J/m2 when compared with cells with normal Hsp70 levels and in quercetin-treated cells. This differential protection disappeared at 80 J/m2. These results suggest that overexpressed Hsp70 might play a role in protecting A549 cells from DNA damage caused by UVC irradiation, with a threshold of protection from at UVC irradiation-induced DNA damage by Hsp70. The detailed mechanism how Hsp70 is involved in DNA damage and possible DNA repair warrants further investigation.  相似文献   

19.
Heat shock results in inhibition of general protein synthesis. In thermotolerant cells, protein synthesis is still rapidly inhibited by heat stress, but protein synthesis recovers faster than in naive heat-shocked cells, a phenomenon known as translational thermotolerance. Here we investigate the effect of overexpressing a single heat shock protein on cap-dependent and cap-independent initiation of translation during recovery from a heat shock. When overexpressing alphaB-crystallin or Hsp27, cap-dependent initiation of translation was protected but no effect was seen on cap-independent initiation of translation. When Hsp70 was overexpressed however, both cap-dependent and -independent translation were protected. This finding indicates a difference in the mechanism of protection mediated by small or large heat shock proteins. Phosphorylation of alphaB-crystallin and Hsp27 is known to significantly decrease their chaperone activity; therefore, we tested phosphorylation mutants of these proteins in this system. AlphaB-crystallin needs to be in its non-phosphorylated state to give protection, whereas phosphorylated Hsp27 is more potent in protection than the unphosphorylatable form. This indicates that chaperone activity is not a prerequisite for protection of translation by small heat shock proteins after heat shock. Furthermore, we show that in the presence of 2-aminopurine, an inhibitor of kinases, among which is double-stranded RNA-activated kinase, the protective effect of overexpressing alphaB-crystallin is abolished. The synthesis of the endogenous Hsps induced by the heat shock to test for thermotolerance is also blocked by 2-aminopurine. Most likely the protective effect of alphaB-crystallin requires synthesis of the endogenous heat shock proteins. Translational thermotolerance would then be a co-operative effect of different heat shock proteins.  相似文献   

20.
Heat shock proteins (Hsp) are well known to be expressed in response to a range of cellular stresses. They are known to convey protection against protein denaturation and a subsequent immediate stress. Inducible heat shock protein 70 (Hsp70) is among the most studied of these stress proteins and its role and function are discussed here in terms of thermal and in particular exercise preconditioning. Preconditioning has been shown to confer cellular protection via expression Hsp, which may be of benefit in preventing protein damage following subsequent periods of exercise. Many studies have used animal models to gather data on Hsp70 and these and the most recent human studies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号