首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
  1. Download : Download high-res image (145KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
4.
Active application of gold nanoparticles for various diagnostic and therapeutic purposes started in recent decades due to the emergence of new data on their unique optical and physicochemical properties. In addition to colloidal gold conjugates, growth in the number of publications devoted to the synthesis and application of multifunctional nanocomposites has occurred in recent years. This review considers the application in biomedicine of multifunctional nanoparticles that can be produced in three different ways. The first method involves design of composite nanostructures with various components intended for either diagnostic or therapeutic functions. The second approach uses new bioconjugation techniques that allow functionalization of gold nanoparticles with various molecules, thus combining diagnostic and therapeutic functions in one medical procedure. Finally, the third method for production of multifunctional nanoparticles combines the first two approaches, in which a composite nanoparticle is additionally functionalized by molecules having different properties.  相似文献   

5.
Thermoplastic starch-waxy maize starch nanocrystals nanocomposites   总被引:1,自引:0,他引:1  
Waxy maize starch nanocrystals obtained by hydrolysis of native granules were used as a reinforcing agent in a thermoplastic waxy maize starch matrix plasticized with glycerol. Compared to our previous studies on starch nanocrystals reinforced natural rubber (NR) [Macromolecules 2005, 38, 3783; 2005, 38, 9161], the present system presents two particularities: (i) thermoplastic starch is a polar matrix, contrarily to NR, and (ii) the chemical structures of the matrix and the filler are similar. The influence of the glycerol content, filler content, and aging on the reinforcing properties of waxy maize starch nanocrystals (tensile tests, DMA) and crystalline structure (X-ray diffraction) of materials were studied. It was shown that the reinforcing effect of starch nanocrystals can be attributed to strong filler/filler and filler/matrix interactions due to the establishment of hydrogen bonding. The presence of starch nanocrystals leads to a slowing down of the recrystallization of the matrix during aging in humid atmosphere.  相似文献   

6.
The effects of incorporating various montmorillonite nanoclays into wheat, potato, corn, and waxy corn starch samples were examined by rheology and X-ray diffraction. The nanoclays included the hydrophilic Cloisite Na+ clay as well as the more hydrophobic Cloisite 30B, 10A, and 15A clays. Frequency sweep and creep results for wheat starch–nanoclay samples at room temperature indicated that the Cloisite Na+ samples formed more gel-like materials than the other nanoclay samples. X-ray diffraction results showed no intercalation of Cloisite Na+ clays at room temperature, suggesting that starch granules interacted only with the clay surface and not the interlayer. When the various wheat starch–nanoclay samples were heated to 95 °C, the Cloisite Na+ samples exhibited a large increase in modulus. In contrast, the more hydrophobic nanoclay samples had comparable modulus values to the neat starch sample. These results suggested that during gelatinization, the leached amylose interacted with the Cloisite Na+ interlayer, producing better reinforcement and higher modulus values. X-ray diffraction results supported this interpretation since the data showed greater intercalation of Cloisite Na+ clay in the gelatinized samples. The samples containing wheat and corn starch showed comparable elastic modulus values during gelatinization. However, the potato and waxy corn samples had modulus values that rapidly decreased at higher temperatures.  相似文献   

7.
Cellulose-layered montmorillonite (MMT) nanocomposites were prepared by precipitation from N-methylmorpholine- N-oxide (NMMO)/water solutions. Two hybrid samples were obtained to investigate the influence of the reaction time on the extent of clay dispersion within the matrix. It was observed that longer contact times are needed to yield nanocomposites with a partially exfoliated morphology. The thermal and thermal oxidative properties of the hybrids, which might be of interest for fire-resistant final products, were investigated by thermogravimetry and chemiluminescence (CL). The nanocomposites exhibited increased degradation temperatures compared to plain cellulose, and the partially exfoliated sample showed the maximum stability. This result was explained in terms of hindered transfer of heat, oxygen, and degraded volatiles due to the homogeneously dispersed clay filler. Kinetic analysis of the decomposition process showed that the degradation of regenerated cellulose and cellulose-based hybrids occurred through a multistep mechanism. Moreover, the presence of nanoclay led to drastic changes in the dependence of the activation energy on the degree of degradation. CL analysis showed that longer permanence in NMMO/water solutions brought about the formation of carbonyl compounds on the polymer backbone. Moreover, MMT increased the rate of dehydration and oxidation of cellulose functional moieties. As a consequence, cellulose was found to be less stable at temperatures lower than 100 degrees C. Conversely, at higher temperatures, the hindering of oxygen transfer prevailed, determining an increase in thermo-oxidative stability.  相似文献   

8.
New biodegradable polyhydroxybutyrate/layered silicate nanocomposites   总被引:1,自引:0,他引:1  
Poly(hydroxybutyrate) (PHB)/layered silicate nanocomposites were prepared via melt extrusion. The nanostructure, as observed from wide-angle X-ray diffraction and transmission electron microscopy, indicates intercalated hybrids. The extent of intercalation depends on the amount of silicate and the nature of organic modifier present in the layered silicate. The nanohybrids show significant improvement in thermal and mechanical properties of the matrix as compared to the neat polymer. The silicate particles act as a strong nucleating agent for the crystallization of PHB. The biodegradability of pure PHB and its nanocomposites was studied at two different temperatures under controlled conditions in compost media. The rate of biodegradation of PHB is enhanced dramatically in the nanohybrids. The change in biodegradation is rationalized in terms of the crystallization behavior of the nanohybrids as compared to that of the neat polymer.  相似文献   

9.
It has been recognized that seeding vascular bypass grafts with endothelial cells is the ideal method of improving their long-term patency rates. The aim of this study was to assess the in vitro cytocompatibility of a novel silica nanocomposite, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU) and hence elicit its feasibility at the vascular interface for potential use in cardiovascular devices such as vascular grafts. Using primary human umbilical vein endothelial cells (HUVEC), cell viability and adhesion were studied using AlamarBlue assays, whereas cell proliferation on the polymer was assessed using the PicoGreen dye assay. Cellular confluence and morphology on the nanocomposite were analyzed using light and electron microscopy, respectively. Our results showed that there was no significant difference between cell viability in standard culture media and POSS-PCU. Endothelial cells were capable of adhering to the polymer within 30 min of contact (Student's t-test, p<0.05) with no difference between POSS-PCU and control cell culture plates. POSS-PCU was also capable of sustaining good cell proliferation for up to 14d even from low seeding densities (1.0×103 cells/cm2) and reaching saturation by 21 d. Microscopic analysis showed evidence of optimal endothelial cell adsorption morphology with the absence of impaired motility and morphogenesis. In conclusion, these results support the application of POSS-PCU as a suitable biomaterial scaffold in bio-hybrid vascular prostheses and biomedical devices.  相似文献   

10.
Chitin is the second most abundant biopolymer and insight into its natural synthesis, enzymatic degradation, and chemical interactions with other biopolymers is important for bioengineering with this renewable resource. This work is the first report of smooth, homogeneous, ultrathin chitin films, opening the door to surface studies of binding interactions, adsorption kinetics, and enzymatic degradation. The chitin films were formed by spincoating trimethylsilyl chitin onto gold or silica substrates, followed by regeneration to a chitin film. Infrared and X-ray photoelectron spectroscopy, X-ray diffraction, ellipsometry, and atomic force microscopy were used to confirm the formation of smooth, homogeneous, and amorphous chitin thin films. Quartz crystal microbalance with dissipation monitoring (QCM-D) solvent exchange experiments showed these films swelled with 49% water by mass. The utility of these chitin films as biosensors was evident from QCM-D and surface plasmon resonance studies that revealed the adsorption of a bovine serum albumin monolayer.  相似文献   

11.
A series of graphene (GR) pull-out simulations based on molecular dynamics (MD) were carried out to investigate the interfacial mechanical properties between GR and a polymer matrix (polyethylene: PE). The effects of pull-out velocity, number of vacancy defect in GR and temperature on the interfacial mechanical properties of a GR/PE nanocomposite system were explored. The obtained results showed that the pull-out velocity and the temperature have significant influences on the interfacial mechanical properties for a perfect GR. Moderate vacancy defects in GR can effectively enhance the interfacial mechanical properties in GR-based polymer nanocomposites.  相似文献   

12.
In this study, molecular dynamic simulations were used to carry out a dynamic mechanical analysis of polymer nanocomposites (PNC) containing polypropylene (PP) and various volume fractions of single walled carbon nanotubes (SWCNTs). After assembling the composite unit cell, relaxation studies were performed by loading the specimen to a predetermined strain under quasistatic loading and then sustaining the strain while allowing the material to relax. Nano level readjustments of the polymer chains took place during this process, reducing the overall stress levels in the specimen. Free volumes and small voids permitted chain mobility around the carbon nanotubes. By fitting a standard relaxation curve, the nano relaxation parameters of the PNCs were deduced. Relaxation studies were also conducted at different equilibrium temperatures. Using the time temperature transformation relation, a master curve was generated for the nanocomposite with 1.0 % SWCNTs in order to obtain results over an extended period of time.  相似文献   

13.
This is, to our knowledge, the first study of the injection molding of materials where wheat gluten (WG) is the main component. In addition to a plasticizer (glycerol), 5 wt.% natural montmorillonite clay was added. X-ray indicated intercalated clay and transmission electron microscopy indicated locally good clay platelet dispersion. Prior to feeding into the injection molder, the material was first compression molded into plates and pelletized. The filling of the circular mold via the central gate was characterized by a divergent flow yielding, in general, a stronger and stiffer material in the circumferential direction. It was observed that 20-30 wt.% glycerol yielded the best combination of processability and mechanical properties. The clay yielded improved processability, plate homogeneity and tensile stiffness. IR spectroscopy and protein solubility indicated that the injection molding process yielded a highly aggregated structure. The overall conclusion was that injection molding is a very promising method for producing WG objects.  相似文献   

14.
The study presents the preparation of some composite materials with magnetic properties by two different encapsulation methods of magnetite (Fe3O4) in a polymer matrix based on carboxymethyl starch-g-polylactic acid (CMS-g-PLA). The copolymer matrix used to obtain the magnetic nanocomposites was synthesized by grafting reaction of carboxymethyl starch (CMS) with d,l-lactic acid (DLLA), in the presence of Sn octanoate [Sn(Oct)2] as catalyst. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3 (molar ratio 1/2). The magnetic composites were prepared by precipitation method in acetone (non-solvent) of the DMSO solutions of magnetite and copolymer, and synthesis in situ of the nanocomposites. In the first case, the particle size measured by DLS-technique was 168 nm, and the magnetization was 46.82 emu/g, while after in situ synthesis, the composite materials showed smaller size (141 nm), but the magnetization was reduced (3.04 emu/g). The higher magnetization in the first case is due to the great degree of encapsulation of the magnetite, which was about 43.4 wt.%, compared to 4.37 wt.% for the in situ synthesis (determined by thermogravimetry). The CMS-g-PLA copolymer, magnetite, and the nanocomposites were characterized by infrared spectroscopy (FTIR), near infrared chemical imagistic (NIR-CI), dynamic light scattering (DLS) technique, X-ray diffraction (WAXD), scanning electron microscopy (SEM), vibrating sample magnetometer (VSM) and thermal analyses. Since the polymer matrix and magnetite are biodegradable and biocompatible, the magnetic nanocomposites can be used for conjugation of some drugs. The polymer matrix CMS-g-PLA acts as a shell, and vehicle for the active component, whereas magnetite is the component which makes targeting possible by external magnetic field manipulation.  相似文献   

15.
Lu Y  Larock RC 《Biomacromolecules》2006,7(9):2692-2700
Novel biobased nanocomposites have been prepared by the cationic polymerization of conjugated soybean oil (CSOY) or conjugated LoSatSoy oil (CLS) with styrene (ST) and divinylbenzene (DVB), and a reactive organomodified montmorillonite (VMMT) clay as a reinforcing phase. This filler has been prepared by the cationic exchange of sodium montmorillonite with (4-vinylbenzyl)triethylammonium chloride in aqueous solution. The nanostructures of the nanocomposites have been determined by using wide-angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM), respectively. The results from WAXD and TEM indicate that a heterogeneous structure consisting of intercalation and partial exfoliation or an intercalation structure exists in the nanocomposites, depending on the amount of VMMT in the polymer matrix. The thermal, mechanical, and organic vapor barrier properties of the nanocomposites have been evaluated by dynamic thermal analysis, thermogravimetric analysis, mechanical testing, and toluene absorption. A significant improvement is observed in the thermal stability, the dynamic bending storage modulus, the compressive modulus, the compressive strength, the compressive strain at failure, and the vapor barrier performance for the CSOY-- and CLS-based nanocomposites with 1-2 wt % VMMT loading, where some individual exfoliated silicate platelets occur. For example, the CLS-based nanocomposite with 1-2 wt % VMMT exhibits increases of 100-128%, 86-92%, and 5-7% in compressive modulus, compressive strength, and compressive strain at failure, respectively. CLS with higher unsaturation and reactivity affords nanocomposites with higher thermal stability and higher mechanical properties than CSOY.  相似文献   

16.
In the quest for improved performance from polymers that offer biodegradation and therefore environmental acceptability, one approach is the addition of natural clays to produce nanocomposites. This study examines nanocomposites of glycerol-plasticized starch, with untreated montmorillonite and hectorite. Treated hectorite and kaolinite were added to produce conventional composites within the same clay volume fraction range for comparison. X-ray diffraction and transmission electron microscopy are used to confirm the type of composite. The ultrasonic pulse-echo technique was used to measure Young's and shear modulus. The nanocomposites presented greater increases in modulus for a given volume fraction of clay thus contributing to this new class of biodegradable and environmentally acceptable materials, although the results indicate that a plasticizer other than glycerol is preferable.  相似文献   

17.
Recent discoveries arising from a combination of the biological, physical, chemical and materials sciences have resulted in the invention of numerous hybrid molecules that possess strengths inherent to each individual discipline. Nanocomposites that link biological molecules to inorganic moieties have led to a family of new reagents with unique capabilities for cellular imaging and macromolecule detection. A recent report has extended the applications of these hybrid molecules from their use as detection and scaffolding reagents into the realm of a biologically functional molecule.  相似文献   

18.
This work describes development and optimization of a generic method for the immobilization of enzymes in chemically synthesized gold polypyrrole (Au-PPy) nanocomposite and their application in amperometric biosensors. Three enzyme systems have been used as model examples: cytochrome c, glucose oxidase and polyphenol oxidase. The synthesis and deposition of the nanocomposite was first optimized onto a glassy carbon electrode (GCE) and then, the optimum procedure was used for enzyme immobilization and subsequent fabrication of glucose and phenol biosensors. The resulting nanostructured polymer strongly adheres to the surface of the GCE electrode, has uniform distribution and is very stable. The method has proved to be an effective way for stable enzyme attachment while the presence of gold nanoparticles provides enhanced electrochemical activity; it needs very small amounts of pyrrole and enzyme and the Au-PPy matrix avoids enzyme leaking. The preparation conditions, Michaelis-Menten kinetics and analytical performance characteristics of the two biosensors are discussed. Optimization of the experimental parameters was performed with regard to pyrrole concentration, enzyme amount, pH and operating potential. These biosensors resulted in rapid, simple, and accurate measurement of glucose and phenol with high sensitivities (1.089 mA/M glucose and 497.1 mA/M phenol), low detection limits (2 x 10(-6)M glucose and 3 x 10(-8)M phenol) and fast response times (less than 10s). The biosensors showed an excellent operational stability (at least 100 assays) and reproducibility (R.S.D. of 1.36%).  相似文献   

19.
Cellulose nanocrystals are promising as a new class of reinforcing material for the preparation of nanostructured composites. We report here the preparation of cellulose nanocrystal multilayer composites with poly(diallyldimethylammonium chloride) using layer-by-layer assembly (LBL) technique. The LBL assembly was characterized with UV-Vis spectroscopy and ellipsometry. The average thickness of a single bilayer was found to be 11 nm. AFM and SEM characterization revealed uniform coverage and densely packed cellulose crystal surface.  相似文献   

20.
Methods of noncovalent immobilization of DNA fragments on titanium dioxide nanoparticles (TiO2) were developed to design TiO2~DNA nanocomposites, which were capable of penetrating through cell membranes. TiO2 nanoparticles of different forms (amorphous, anatase, brookite) with enhanced agglomeration stability were synthesized. The particles were characterized by X-ray diffraction, small-angle X-ray scattering, infrared spectroscopy and atomic force microscopy. Three approaches to the preparation of nanocomposites are described: 1) sorption of polylysine-containing oligonucleotides onto TiO2 nanoparticles, 2) the electrostatic binding of oligonucleotides to TiO2 nanoparticles bearing immobilized polylysine, and 3) sorption of oligonucleotides on TiO2 nanoparticles in the presence of cetyltrimethylammonium bromide (cetavlon). All three methods provide an efficient and stable immobilization of DNA fragments on nanoparticles that leads to nanocomposites with a capacity of up to 40 nmol/mg for an oligonucleotide. DNA fragments in nanocomposites were shown to retain their ability to form complementary complexes. It was demonstrated by confocal laser microscopy that the proposed nanocomposites penetrated into cells without transfection agents and other methods of exposure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号