首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
New site-specific protein labeling (SSPL) reactions for targeting-specific, short peptides could be useful for the real-time detection of proteins inside of living cells. One SSPL approach matches bioorthogonal reagents with complementary peptides. Here, hydrazide reactive peptides were selected from phage-displayed libraries using reaction-based selections. Selection conditions included washes of varying pH and treatment with NaCNBH(3) in order to specifically select reactive carbonyl-containing peptides. Selected peptides were fused to T4 lysozyme or synthesized on filter paper for colorimetric assays of the peptide-hydrazide interaction. A peptide-lysozyme protein fusion demonstrated specific, covalent labeling by the hydrazide reactive (HyRe) peptides in crude bacterial cell lysates, sufficient for the specific detection of an overexpressed protein fusion. Chemical synthesis of a short HyRe tag variant and subsequent reaction with two structurally distinct hydrazide probes produced covalent adducts observable by MALDI-TOF MS and MS/MS. Rather than isolating reactive carbonyl-containing peptides, we observed reaction with the N-terminal His of HyRe tag 114, amino acid sequence HKSNHSSKNRE, which attacks the hydrazide carbonyl at neutral pH. However, at the pH used during selection wash steps (<6.0), an alternative imine-containing product is formed that can be reduced with sodium cyanoborohydride. MSMS further reveals that this low pH product forms an adduct on Ser6. Further optimization of the novel bimolecular reaction described here could provide a useful tool for in vivo protein labeling and bioconjugate synthesis. The reported selection and screening methods could be widely applicable to the identification of peptides capable of other site-specific protein labeling reactions with bioorthogonal reagents.  相似文献   

2.
Most covalent protein labeling schemes require a choice between visual and affinity properties, requiring the use of multiple fusion systems where both attributes are needed. While not disruptive at the single experiment level, this detail becomes critical when addressing high-throughput experimentation. Here we develop a uniform site-specific protein tag for use in both fluorescent and affinity screening. Covalent protein tagging with a stilbene reporter via promiscuous phosphopantetheinyltransferase (PPTase) modification enables a switchable, antibody-elicited fluorescent response in solution or on affinity resin. For demonstration purposes, VibB, a natural fusion protein harboring a carrier protein domain, was labeled with a stilbene tag through PPTase modification with a stilbene-labeled coenzyme A analogue. Analysis of the resulting stilbene-tagged VibB was accomplished by fluorescent and Western blot analysis with anti-stilbene monoclonal antibody EP2-19G2. The illustration of this method for general application to fusion protein analysis offers a dual role in assisting both solution-based fluorescent analysis and surface-based affinity detection and purification.  相似文献   

3.
In this report, we describe the radiosynthesis of a new thiol-targeting prosthetic group for efficient radioactive iodine labeling of biomolecules. Radioiodination using the precursor 3 was performed to obtain 125I-labeled tetrazole 4b with high radiochemical yield (73%) and radiochemical purity. Using the radiolabeled 4b, a single free cysteine containing peptide and human serum albumin were labeled with 125I in modest-to-good radiochemical yields (65–99%) under mildly reactive conditions. A biodistribution study of [125I]7 in normal ICR mice exhibited lower thyroid uptake values than those of 125I-labeled human serum albumin prepared via a traditional radiolabeling method. Thus, [125I]7 could be employed as an effective radiotracer for molecular imaging and biodistribution studies. The results clearly demonstrate that 4b has the potential to be effectively implemented as a prosthetic group in the preparation of radiolabeled biomolecules.  相似文献   

4.
Chemical methods of DNA and RNA fluorescent labeling.   总被引:1,自引:3,他引:1       下载免费PDF全文
Several procedures have been described for fluorescent labeling of DNA and RNA. They are based on the introduction of aldehyde groups by partial depurination of DNA or oxidation of the 3'-terminal ribonucleoside in RNA by sodium periodate. Fluorescent labels with an attached hydrazine group are efficiently coupled with the aldehyde groups and the hydrazone bonds are stabilized by reduction with sodium cyanoborohydride. Alternatively, DNA can be quantitatively split at the depurinated sites with ethylenediamine. The aldimine bond between the aldehyde group in depurinated DNA or oxidized RNA and ethylenediamine is stabilized by reduction with sodium cyanoborohydride and the primary amine group introduced at these sites is used for attachment of isothiocyanate or succinimide derivatives of fluorescent dyes. The fluorescent DNA labeling can be carried out either in solution or on a reverse phase column. These procedures provide simple, inexpensive methods of multiple DNA labeling and of introducing one fluorescent dye molecule per RNA, as well as quantitative DNA fragmentation and incorporation of one label per fragment. These methods of fluorophore attachment were shown to be efficient for use in the hybridization of labeled RNA, DNA and DNA fragments with oligonucleotide microchips.  相似文献   

5.
Red fluorescent proteins (RFPs) are useful tools for live cell and multi-color imaging in biological studies. However, when labeling proteins in secretory pathway, many RFPs are prone to form artificial puncta, which may severely impede their further uses. Here we report a fast and easy method to evaluate RFPs fusion properties by attaching RFPs to an environment sensitive membrane protein Orai1. In addition, we revealed that intracellular artificial puncta are actually colocalized with lysosome, thus besides monomeric properties, pKa value of RFPs is also a key factor for forming intracellular artificial puncta. In summary, our current study provides a useful guide for choosing appropriate RFP for labeling secretory membrane proteins. Among RFPs tested, mOrange2 is highly recommended based on excellent monomeric property, appropriate pKa and high brightness.  相似文献   

6.
Monosaccharides are fluorescently labeled under microwave irradiation by N-(coumarin-3-carbonyl)benzotriazole 4. 1,2:3,4-di- O-isopropylidene-alpha- d-galactopyranose 9 gives 12 (90%), 1,2:5,6-di- O-isopropylidene- d-glucose 10 gives 13 (89%), 2,3:5,6-di- O-isopropylidene-alpha- d-mannofuranose 11 gives 14 (65%) (all by O-acylation) and 2,3,4,5-tetra- O-pivaloyl-beta- d-galactopyranosylamine 15 gives 16 (60%) (by N-acylation). Similarly, the coumarin-containing activated lysine derivatives 7 and 8 afford the l-lysine-scaffold based coumarin labeled sugars 17, 18a, b, and 19 (67-85%) which, after removal of the diisopropylidene groups, provide water-soluble fluorescent derivatives.  相似文献   

7.
To study conformational changes within a single protein molecule, sp-FRET (single pair fluorescence resonance energy transfer) is an important technique to provide distance information. However, incorporating donor and acceptor dyes into the same protein molecule is not an easy task. Here, we report a strategy for the efficient double-labeling of a protein on a solid support. An ubiquitin mutant with two Cys mutations, one with high solvent accessibility and the other with low solvent accessibility, was constructed. The protein was bound to magnetic beads and reacted with the dyes. The first dye reacted with the side-chain of the Cys with the high solvent accessibility and the second with the other Cys under partially denaturing conditions. Using this method, we can easily label two dyes in a site-specific way on ubiquitin with a satisfied yield. The labeling sites for donor and acceptor dyes can be easily swapped.  相似文献   

8.
The site-specific intramolecular cross-linking of sulfhydryls of monoclonal antibodies via a new class of "equilibrium transfer alkylation cross-link (ETAC) reagents" is described. Following complete or partial reduction of interchain disulfides with dithiothreitol (DTT), two murine IgG2a monoclonal antibodies, 225.28S and 5G6.4, were reacted with alpha,alpha-bis[(p-tolylsulfonyl)methyl]-m-aminoacetophenone (ETAC 1a) and a fluorescent conjugated derivative, sulforhodamine B m-(alpha,alpha-bis(p-tolysulfonylmethyl)acetyl)anilide derivative (ETAC 1b). Reducing SDS-polyacrylamide gel electrophoresis analysis of the products from 1b indicated the formation of S-ETAC-S interchain heavy and light chain cross-links (approximately 23-34% overall yield by video-camera densitometry) which do not undergo disulfide-thiol exchange with DTT at 100 degrees C. In contrast, no interchain cross-links were observed upon reaction of unreduced or reduced antibody wherein the thiols have been previously alkylated with iodoacetamide. These results indicated site-specific cross-linking of interchain sulfhydryls and places their distance within 3-4 A. Flow cytometry of the ETAC 1b 5G6.4 cross-linked product using 77 IP3 human ovarian carcinoma target cells showed positive binding and retention of immunoreactivity. The in vivo biodistributions of 131I-labeled intact 5G6.4 and 125I-labeled reduced 5G6.4 + ETAC 1a product in rats were essentially identical over a period of 24 h. The present study illustrates the potential applications of labelable ETAC reagents as thiol-specific probes for a wide variety of immunological studies.  相似文献   

9.
Novel vinylsulfone cyanine dyes (em. 550-850 nm) were designed and synthesized for fluorescent labeling of biomolecules via 1,2-addition reaction in aqueous conditions. Due to the virtue of chemical structures of both fluorophore and reactive group, these dyes could be significantly stable and reactive in various aqueous/organic conditions. A wide variety of pH, temperature, buffer concentration, and protein were tested for the optimal labeling condition.  相似文献   

10.
S-nitrosylation, a post-translational modification of cysteine residues induced by nitric oxide, mediates many physiological functions. Due to the labile nature of S-nitrosylation, detection by mass spectrometry (MS) is challenging. Here, we developed an S-alkylating labeling strategy using the irreversible biotinylation on S-nitrosocysteines for site-specific identification of the S-nitrosoproteome by LC-MS/MS. Using COS-7 cells without endogenous nitric oxide synthase, we demonstrated that the S-alkylating labeling strategy substantially improved the blocking efficiency of free cysteines, minimized the false-positive identification caused by disulfide interchange, and increased the digestion efficiency for improved peptide identification using MS analyses. Using this strategy, we identified total 586 unique S-nitrosylation sites corresponding to 384 proteins in S-nitroso-N-acetylpenicillamine (SNAP)/l-cysteine-treated mouse MS-1 endothelial cells, including 234 previously unreported S-nitrosylated proteins. When the topologies of 84 identified transmembrane proteins were further analyzed, their S-nitrosylation sites were found to mostly face the cytoplasmic side, implying that S-nitrosylation occurs in the cytoplasm. In addition to the previously known acid/basic motifs, the ten deduced consensus motifs suggested that combination of local hydrophobicity and acid/base motifs in the tertiary structure contribute to the specificity of S-nitrosylation. Moreover, the S-nitrosylated cysteines showed preference on beta-strand, having lower relative surface accessibility at the S-nitrosocysteines.  相似文献   

11.
We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.  相似文献   

12.
13.
Bar-coding biomolecules with fluorescent nanocrystals.   总被引:16,自引:0,他引:16  
  相似文献   

14.
  1. Download : Download high-res image (232KB)
  2. Download : Download full-size image
  相似文献   

15.
Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.  相似文献   

16.
Unavailability of fusion tags that possess both affinity and visualization properties is a hurdle for biomolecular research. Typically, either a choice is made between an affinity tag and a reporter tag or both are employed in tandem if a fusion can be made at both termini of the target biomolecule. In this work, we have developed a site-specific genetic fusion approach employing DsRed-Monomer, a red fluorescent protein, that provides for both affinity and reporter functionality in a single tag. As a proof-of-concept, two fusion proteins, bradykinin-DsRed-Monomer and calmodulin-DsRed-Monomer, were prepared for the study. These fusion proteins were purified using a copper-immobilized column based on the inherent copper-binding property of DsRed-Monomer. Spectroscopic characterization of fusion proteins and comparison with native DsRed-Monomer showed no effect of fusion on the properties of DsRed-Monomer. Further, bradykinin-DsRed-Monomer was employed in the development of a competitive fluorescence immunoassay for the peptide bradykinin. Calmodulin-DsRed-Monomer was used to detect binding of the calmodulin ligand chlorpromazine, based on a change in the fluorescence of DsRed-Monomer upon binding of chlorpromazine to calmodulin. The studies performed demonstrate the application of DsRed-Monomer as a dual function tag indicating the potential usefulness of DsRed-monomer in proteomics and biomolecular research.  相似文献   

17.
Probing structures and dynamics within biomolecules using ensemble and single-molecule fluorescence resonance energy transfer requires the conjugation of fluorophores to proteins in a site-specific and thermodynamically nonperturbative fashion. Using single-molecule fluorescence-aided molecular sorting and the chymotrypsin inhibitor 2-subtilisin BPN' complex as an example, we demonstrate that protein-protein interactions can be exploited to afford site-specific labeling of a recombinant double-cysteine variant of CI2 without the need for extensive and time-consuming chromatography. The use of protein-protein interactions for site-specific labeling of proteins is compatible with and complementary to existing chemistries for selective labeling of N-terminal cysteines, and could be extended to label multiple positions within a given polypeptide chain.  相似文献   

18.
19.
Here we report efficient and selective postsynthesis labeling strategies, based on an advanced phosphoramidation reaction, for nucleic acids of either synthetic or enzyme-catalyzed origin. The reactions provided phosphorimidazolide intermediates of DNA or RNA which, whether reacted in one pot (one-step) or purified (two-step), were directly or indirectly phosphoramidated with label molecules. The acquired fluorophore-labeled nucleic acids, prepared from the phosphoramidation reactions, demonstrated labeling efficacy by their F/N ratio values (number of fluorophores per molecule of nucleic acid) of 0.02–1.2 which are comparable or better than conventional postsynthesis fluorescent labeling methods for DNA and RNA. Yet, PCR and UV melting studies of the one-step phosphoramidation-prepared FITC-labeled DNA indicated that the reaction might facilitate nonspecific hybridization in nucleic acids. Intrinsic hybridization specificity of nucleic acids was, however, conserved in the two-step phosphoramidation reaction. The reaction of site-specific labeling nucleic acids at the 5′-end was supported by fluorescence quenching and UV melting studies of fluorophore-labeled DNA. The two-step phosphoramidation-based, effective, and site-specific labeling method has the potential to expedite critical research including visualization, quantification, structural determination, localization, and distribution of nucleic acids in vivo and in vitro.  相似文献   

20.
A fluorescent labeling procedure, which does not perturb macromolecular conformations, was employed to bind a rhodamine derivative to the reducing end of several water-soluble polysaccharides by reductive amination in the presence of sodium cyanoborohydride. Fluorescence correlation spectroscopy, atomic force microscopy, and size exclusion chromatography were used to demonstrate that the conformations of the polysaccharides schizophyllan, polygalacturonic acid (PGUA), succinoglycan, and several dextrans were maintained following the labeling procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号