首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stütz AM  Morrison CD  Argyropoulos G 《Peptides》2005,26(10):1771-1781
The melanocortin system plays an important role in the regulation of energy homeostasis. The Agouti-related protein (AGRP) is a natural antagonist of the action of alpha-melanocyte stimulating hormone (alpha-MSH) at the melanocortin receptors (MCR). AGRP is upregulated by fasting while intracerebroventricular injections of synthetic AGRP lead to increased appetite and food intake. Transgenic mice overexpressing AGRP are also hyperphagic and eventually become obese. AGRP is, therefore, a significant regulator of energy balance and a candidate gene for human fatness. Indeed, humans with common single nucleotide polymorphisms (SNPs) in the promoter or the coding region are leaner and resistant to late-onset obesity than wild-type individuals. AGRP is also expressed in the periphery. Recent studies show that AGRP in the adrenal gland is upregulated by fasting as much as it is in the hypothalamus. These data open up the possibility for a wider role by AGRP not only in food intake but also in the regulation of energy balance through its actions on peripheral tissues. This review summarizes recent advances in the biochemical and physiological properties of AGRP in an effort to enhance our understanding of the role this powerful neuropeptide plays in mammalian energy homeostasis.  相似文献   

2.
The metabolic disease 3-methylglutaconic aciduria type I (MGA1) is characterized by an abnormal organic acid profile in which there is excessive urinary excretion of 3-methylglutaconic acid, 3-methylglutaric acid and 3-hydroxyisovaleric acid. Affected individuals display variable clinical manifestations ranging from mildly delayed speech development to severe psychomotor retardation with neurological handicap. MGA1 is caused by reduced or absent 3-methylglutaconyl-coenzyme A (3-MG-CoA) hydratase activity within the leucine degradation pathway. The human AUH gene has been reported to encode for a bifunctional enzyme with both RNA-binding and enoyl-CoA-hydratase activity. In addition, it was shown that mutations in the AUH gene are linked to MGA1. Here we present kinetic data of the purified gene product of AUH using different CoA-substrates. The best substrates were (E)-3-MG-CoA (V(max) = 3.9 U.mg(-1), K(m) = 8.3 microM, k(cat) = 5.1 s(-1)) and (E)-glutaconyl-CoA (V(max) = 1.1 U.mg(-1), K(m) = 2.4 microM, k(cat) = 1.4 s(-1)) giving strong evidence that the AUH gene encodes for the major human 3-MG-CoA hydratase in leucine degradation. Based on these results, a new assay for AUH activity in fibroblast homogenates was developed. The only missense mutation found in MGA1 phenotypes, c.719C>T, leading to the amino acid exchange A240V, produces an enzyme with only 9% of the wild-type 3-MG-CoA hydratase activity.  相似文献   

3.
The effects of leucine, its metabolites, and the 2-oxo acids of valine and isoleucine on protein synthesis and degradation in incubated limb muscles of immature and adult rats were tested. Leucine stimulated protein synthesis but did not reduce proteolysis when leucine transamination was inhibited. 4-Methyl-2-oxopentanoate at concentrations as low as 0.25 mM inhibited protein degradation but did not change protein synthesis. The 2-oxo acids of valine and isoleucine did not change protein synthesis or degradation even at concentrations as high as 5 mM. 3-Methylvalerate, the irreversibly decarboxylated product of 4-methyl-2-oxopentanoate, decreased protein degradation at concentrations greater than or equal to 1 mM. This was not due to inhibition of 4-methyl-2-oxopentanoate catabolism, because 0.5 mM-3-methylvalerate did not suppress proteolysis, even though it inhibited leucine decarboxylation by 30%; higher concentrations of 3-methylvalerate decreased proteolysis progressively without inhibiting leucine decarboxylation further. During incubation with [1-14C]- and [U-14C]-leucine, it was found that products of leucine catabolism formed subsequent to the decarboxylation of 4-methyl-2-oxopentanoate accumulated intracellularly. This pattern was not seen during incubation with radiolabelled valine. Thus, the effect of leucine on muscle proteolysis requires transamination to 4-methyl-2-oxopentanoate. The inhibition of muscle protein degradation by leucine is most sensitive to, but not specific for, its 2-oxo acid, 4-methyl-2-oxopentanoate.  相似文献   

4.
5.
Since mitochondria are closed spaces in the cell, metabolite traffic across the mitochondrial membrane is needed to accomplish energy metabolism. The mitochondrial carriers play this function by uniport, symport and antiport processes. We give here a survey of about 50 transport processes catalysed by more than 30 carriers with a survey of the methods used to investigate metabolite transport in isolated mammalian mitochondria. The role of mitochondria in metabolic pathways including ammoniogenesis, amino acid metabolism, mitochondrial shuttles etc. is also reported in more detail, mainly in the light of the existence of new transport processes.  相似文献   

6.
7.
Summary. The mechanism by which glutamine produces a favorable effect in the treatment of sepsis, injury, burns and abdominal irradiation is not completely understood. The main aim of this study was to evaluate the effect of alanyl-glutamine (AlaGln) administration on the metabolism of proteins in irradiated rats. The rats were exposed to whole-body irradiation (8 Gy) and then fed intragastrically with a mixture of glucose and amino acids either with AlaGln or without AlaGln. At 48 hours after irradiation, parameters of whole-body protein metabolism and DNA synthesis in intestinal mucosa were investigated using a primed, continuous infusion of [1-14C]leucine and [3H]thymidine. In addition, we evaluated the effect of irradiation and AlaGln on gut morphology, blood count and amino acid concentrations in blood plasma and skeletal muscle. Control rats were not irradiated but were given identical treatment. An increase in whole-body leucine oxidation, and insignificant changes in whole-body proteolysis and in protein synthesis were observed after irradiation. In irradiated rats we observed a decrease in muscle glutamine concentration, a decrease in protein synthesis in jejunum, colon and heart, and an increase in synthesis of proteins of blood plasma and spleen. Morphological examination and measurement of DNA synthesis failed to demonstrate any favorable effect of AlaGln supplementation on irradiated gut. However, administration of AlaGln resulted in a decrease in whole-body proteolysis and leucine oxidation which caused an increase in the fraction of leucine incorporated into the pool of body proteins. We conclude that the data obtained demonstrate that irradiation induces metabolic derangement associated with increased oxidation of essential branched-chain amino acids (valine, leucine and isoleucine) and that these disturbances can be ameliorated by administration of AlaGln. Received February 14, 2000 Accepted July 12, 2000  相似文献   

8.
9.
The adult brain relies on glucose for its energy needs and stores it in the form of glycogen, primarily in astrocytes. Animal and culture studies indicate that brain glycogen may support neuronal function when the glucose supply from the blood is inadequate and/or during neuronal activation. However, the concentration of glycogen and rates of its metabolism in the human brain are unknown. We used in vivo localized 13C-NMR spectroscopy to measure glycogen content and turnover in the human brain. Nine healthy volunteers received intravenous infusions of [1-(13)C]glucose for durations ranging from 6 to 50 h, and brain glycogen labeling and washout were measured in the occipital lobe for up to 84 h. The labeling kinetics suggest that turnover is the main mechanism of label incorporation into brain glycogen. Upon fitting a model of glycogen metabolism to the time courses of newly synthesized glycogen, human brain glycogen content was estimated at approximately 3.5 micromol/g, i.e., three- to fourfold higher than free glucose at euglycemia. Turnover of bulk brain glycogen occurred at a rate of 0.16 micromol.g-1.h-1, implying that complete turnover requires 3-5 days. Twenty minutes of visual stimulation (n=5) did not result in detectable glycogen utilization in the visual cortex, as judged from similar [13C]glycogen levels before and after stimulation. We conclude that the brain stores a substantial amount of glycogen relative to free glucose and metabolizes this store very slowly under normal physiology.  相似文献   

10.
The role of PAS kinase in regulating energy metabolism   总被引:1,自引:0,他引:1  
Hao HX  Rutter J 《IUBMB life》2008,60(4):204-209
  相似文献   

11.
12.
Leucine has been shown to stimulate adipose tissue protein synthesis in vivo as well as leptin secretion, protein synthesis, hyper-plastic growth, and tissue morphogenesis in in vitro experiments using freshly isolated adipocytes. Recently, others have proposed that leucine oxidation in the mitochondria may be required to activate the mammalian target of rapamycin (mTOR), the cytosolic Ser/Thr protein kinase that appears to mediate some of these effects. The first irreversible and rate-limiting step in leucine oxidation is catalyzed by the branched-chain alpha-keto acid dehydrogenase (BCKD) complex. The activity of this complex is regulated acutely by phosphorylation of the E1alpha-subunit at Ser293 (S293), which inactivates the complex. Because the alpha-keto acid of leucine regulates the activity of BCKD kinase, it has been suggested as a potential target for leucine regulation of mTOR. To study the regulation of BCKD phosphorylation and its potential link to mTOR activation, a phosphopeptide-specific antibody recognizing this site was developed and characterized. Phospho-S293 (pS293) immunoreactivity in liver corresponded closely to diet-induced changes in BCKD activity state. Immunoreactivity was also increased in TREMK-4 cells after the induction of BCKD kinase by a drug-inducible promoter. BCKD S293 phosphorylations in adipose tissue and gastrocnemius (which is mostly inactive in vivo) were similar. This suggests that BCKD complex in epididymal adipose tissue from food-deprived rats is mostly inactive (unable to oxidize leucine), as is the case in muscle. To begin to test the leucine oxidation hypothesis of mTOR activation, the dose-dependent effects of orally administered leucine on acute activation of S6K1 (an mTOR substrate) and BCKD were compared using the pS293 antibodies. Increasing doses of leucine directly correlated with increases in plasma leucine concentration. Phosphorylation of S6K1 (Thr389, the phosphorylation site leading to activation) in adipose tissue was maximal at a dose of leucine that increased plasma leucine approximately threefold. Changes in BCKD phosphorylation state required higher plasma leucine concentrations. The results seem more consistent with a role for BCKD and BCKD kinase in the activation of leucine metabolism/oxidation than in the activation of the leucine signal to mTOR.  相似文献   

13.
1. Fructose caused an increase in the rate of ethanol oxidation by rat-liver slices, and d-glyceraldehyde was found to have a similar effect. 2. Addition of glycerol lowered the rate of ethanol oxidation if the incubation medium contained fructose and ethanol, but no such effect was found if it contained glucose and ethanol. 3. The formation of glycerol by the slices during incubation and the concentration of alpha-glycerophosphate in the slices were highest in medium containing fructose and ethanol. 4. In experiments without ethanol in the incubation medium, fructose strongly increased the pyruvate concentration, which resulted in a decrease of the lactate/pyruvate concentration ratio. Addition of ethanol to the medium resulted in a marked decrease in pyruvate concentration. 5. Oxygen consumption is greater in slices incubated in medium containing fructose and ethanol than in slices incubated in medium containing glucose and ethanol.  相似文献   

14.
The influence of energy intake on protein metabolism   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

15.
RecQ family helicases are essential in maintaining chromosomal DNA stability and integrity. Despite extensive studies, the mechanisms of these enzymes are still poorly understood. Crystal structures of many helicases reveal a highly conserved arginine residue located near the γ-phosphate of ATP. This residue is widely recognized as an arginine finger, and may sense ATP binding and hydrolysis, and transmit conformational changes. We investigated the existence and role of the arginine finger in the Bloom syndrome protein (BLM), a RecQ family helicase, in ATP hydrolysis and energy coupling. Our studies by combination of structural modelling, site-directed mutagenesis and biochemical and biophysical approaches, demonstrate that mutations of residues interacting with the γ-phosphate of ATP or surrounding the ATP-binding sites result in severe impairment in the ATPase activity of BLM. These mutations also impair BLM's DNA-unwinding activities, but do not affect its ATP and DNA-binding abilities. These data allow us to identify R982 as the residue that functions as a BLM arginine finger. Our findings further indicate how the arginine finger is precisely positioned by the conserved motifs with respect to the γ-phosphate.  相似文献   

16.
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases,while in recent years,accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic dis-eases,including obesity,type 2 diabetes,nonalcoholic fatty liver disease,cardiovascular disease and so on.Numerous microorganisms dwell in the gastrointestinal tract,which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances,thus acting as a link between the gut microbiome and its host.The gut microbiome is shaped by host genetics,immune responses and dietary fac-tors.The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases.Therefore,targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future.This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut micro-biome-derived metabolites and the pathogenesis of many metabolic diseases.Furthermore,recent advan-ces in improving metabolic diseases by regulating the gut microbiome will be discussed.  相似文献   

17.
A newly discovered enzyme in mammalian tissues, aspartate-4-decarboxylase (EC 4.1.1.12), catalyzes the exothermic conversion of aspartate to alanine and CO2. The occurrence of this enzyme poses at least two important questions. First, what is the purpose of such an enzyme in cell physiology? There are alternate ways to convert aspartate to alanine which are rapid and which conserve energy. Second, since the synthesis of aspartate is an energy-requiring process, how can the cell limit undue energy drain by this, seemingly pointless, beta-decarboxylation of aspartate? It is demonstrated that rat liver aspartate-4-decarboxylase is inhibited by acetyl-coenzyme A and stimulated by glutamate. These regulatory properties were predicted a priori. It was suggested that, in coordination with pyruvate carboxylase, aspartate-4-decarboxylase is important in regulating the metabolic fate of oxaloacetate and thus plays a role in determining the efficiency of carbohydrate metabolism. Furthermore, reciprocal regulation of rat liver pyruvate carboxylase and aspartate-4-decarboxylase would assure a limit on the extent of futile cycling that may occur between these enzymes.  相似文献   

18.
Leucine, but not isoleucine or valine, inhibited protein degradation and accelerated protein synthesis in hearts perfused with buffer that contained glucose (15 mM) and normal plasma levels of other amino acids, except for the branched chain compounds. Products of leucine, isoleucine, and valine metabolism also inhibited protein degradation and stimulated protein synthesis. These compounds included the transamination and decarboxylation products, as well as acetate, acetoacetate, and propionate. In some, but not all instances, inhibition of degradation and acceleration of synthesis were accompanied by an increase in intracellular leucine. When insulin was added to the perfusate, the rate of degradation was reduced by 40%, but addition of leucine was ineffective in the presence of the hormone. Insulin, leucine (2 mM) and a mixture of branched chain amino acids at normal plasma levels increased latency of cathepsin D in hearts that were perfused with buffer containing glucose. A combination of leucine and insulin increased latency more than either substance alone. These studies indicate that leucine as well as a variety of substrates that are oxidized in the citric acid cycle are involved in regulation of protein turnover in heart muscle.  相似文献   

19.
腺苷-磷酸激活的蛋白激酶(AMP-activated protein kinase,AMPK)是公认的重要能量感受酶。其作用与多个代谢途径有关,尤其在脂类营养代谢过程中发挥着关键的调控作用。AMPK对脂质代谢的调控通过多个信号通路进行,涉及到骨骼肌、肝脏、乳腺等多个组织。对AMPK调控脂类营养代谢机理的研究为2型糖尿病、脂肪肝、肥胖症、癌症等多种疾病的治疗提供了靶点,但AMPK在奶牛乳腺组织的研究较少,其在提高奶牛生产性能方面潜能巨大。  相似文献   

20.
Leptin and its role in lipid metabolism   总被引:14,自引:0,他引:14  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号