首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pretreatment of cellulose with an industrial cellulosic solvent, N-methylmorpholine-N-oxide, showed promising results in increasing the rate of subsequent enzymatic hydrolysis. Cotton linter was used as high crystalline cellulose. After the pretreatment, the cellulose was almost completely hydrolyzed in less than 12 h, using low enzyme loading (15 FPU/g cellulose). The pretreatment significantly decreased the total crystallinity of cellulose from 7.1 to 3.3, and drastically increased the enzyme adsorption capacity of cellulose by approximately 42 times. A semi-mechanistic model was used to describe the relationship between the cellulose concentration and the enzyme loading. In this model, two reactions for heterogeneous reaction of cellulose to glucose and cellobiose, and a homogenous reaction for cellobiose conversion to glucose was incorporated. The Langmuir model was applied to model the adsorption of cellulase onto the treated cellulose. The competitive inhibition was also considered for the effects of sugar inhibition on the rate of enzymatic hydrolysis. The kinetic parameters of the model were estimated by experimental results and evaluated.  相似文献   

2.
A semimechanistic multi‐reaction kinetic model was developed to describe the enzymatic hydrolysis of a lignocellulosic biomass, creeping wild ryegrass (CWR; Leymus triticoides). This model incorporated one homogeneous reaction of cellobiose‐to‐glucose and two heterogeneous reactions of cellulose‐to‐cellobiose and cellulose‐to‐glucose. Adsorption of cellulase onto pretreated CWR during enzymatic hydrolysis was modeled via a Langmuir adsorption isotherm. This is the first kinetic model which incorporated the negative role of lignin (nonproductive adsorption) using a Langmuir‐type isotherm adsorption of cellulase onto lignin. The model also reflected the competitive inhibitions of cellulase by glucose and cellobiose. The Matlab optimization function of “lsqnonlin” was used to fit the model and estimate kinetic parameters based on experimental data generated under typical conditions (8% solid loading and 15 FPU/g‐cellulose enzyme concentration without the addition of background sugars). The model showed high fidelity for predicting cellulose hydrolysis behavior over a broad range of solid loading (4–12%, w/w, dry basis), enzyme concentration (15–150 FPU/ g‐cellulose), sugar inhibition (glucose of 30 and 60 mg/mL and cellobiose of 10 mg/mL). In addition, sensitivity analysis showed that the incorporation of the nonproductive adsorption of cellulase onto lignin significantly improved the predictability of the kinetic model. Our model can serve as a robust tool for developing kinetic models for system optimization of enzymatic hydrolysis, hydrolysis reactor design, and/or other hydrolysis systems with different type of enzymes and substrates. Biotechnol. Bioeng. 2009;102: 1558–1569. © 2008 Wiley Periodicals, Inc.  相似文献   

3.
Summary Tests made to improve saccharification of cellulose byTrichoderma cellulases showed that charcoal used as an adsorbent minimized the end product inhibition. Charcoal adsorbed both cellobiose and glucose and did not affect the enzymatic hydrolysis of cellulose. Results showed that charcoal is as effective as -glucosidase in improving the enzymatic saccharification of cellulose.  相似文献   

4.
CelS is the most abundant subunit and an exoglucanase component of the Clostridium thermocellum cellulosome, multicomponent cellulase complex. The product inhibition pattern of CelS was examined using purified recombinant CelS (rCelS) produced in Escherichia coli. The rCelS activity on cellopentaose was strongly inhibited by cellobiose. The rCelS activity was also inhibited by lactose. Glucose was only marginally inhibitory. Cellobiose appeared to inhibit the rCelS activity through a competitive mechanism. The inhibition was relieved when -glucosidase was added, presumably because of the conversion of cellobiose into glucose. These hydrolysis product inhibition patterns are consistent with those of the crude enzyme (cellulosome), suggesting that CelS is a rate-limiting factor in the activity of the cellulosome.  相似文献   

5.
A product inhibition model is developed to describe the hydrolysis of cellulose by the Trichoderma viride enzyme system. It is assumed that noncompetitive inhibition by cellobiose dominates the reaction kinetics. Experiments show that this is indeed a reasonable assumption for initial cellulose concentrations of up to 15 g/liter and at hydrolysis extents up to 65′. Kinetic parameters were determined for the noncompetitive inhibitionmodel in batch experiments with durations of up to 1.5 hr. These parameterswere then used in predicting reaction progress for up to 10 hr. Cellobiose was added to the reaction mixture at the onset of some runs and againreliable predictions were obtained for up to 8 hr of hydrolysis. Finally reaction was carried out in a membrane reactor whereby the product cellobiose was being continuously removed and again reasonable predictability was obtained with a higher net reaction rate.  相似文献   

6.
A mathematical model for enzymatic cellulose hydrolysis, based on experimental kinetics of the process catalysed by a cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4] preparation from Trichoderma longibrachiatum has been developed. The model takes into account the composition of the cellulase complex, the structural complexity of cellulose, the inhibition by reaction products, the inactivation of enzymes in the course of the enzymatic hydrolysis and describes the kinetics of d-glucose and cellobiose formation from cellulose. The rate of d-glucose formation decelerated through the hydrolysis due to a change in cellulose reactivity and inhibition by the reaction product, d-glucose. The rate of cellobiose formation decelerated due to inhibition by the product, cellobiose, and inactivation of enzymes adsorbed on the cellulose surface. Inactivation of the cellobiose-producing enzymes as a result of their adsorption was found to be reversible. The model satisfactorily predicts the kinetics of d-glucose and cellobiose accumulation in a batch reactor up to 70–80% substrate conversion on changing substrate concentration from 5 to 100 g l?1and the concentration of the enzymic preparation from 5 to 60 g l?1.  相似文献   

7.
Kinetic modeling of the enzymatic hydrolysis of pretreated cellulose   总被引:3,自引:0,他引:3  
The production of sugars by the enzymatic hydrolysis of cellulose is a two-step process that includes conversion of the intermediate cellobiose to glucose by beta-glucosidase. The hydrolysis was followed by analyzing the two sugar products (cellobiose and glucose). The enzyme showed maximum activity at pH 4.8. Thermal deactivation was significant at temperatures above 45 degrees C. At 50 degrees C (optimum temperature) thermal deactivation was found to follow first-order kinetics. Several models were tested by modeling the kinetics of the reaction. Their parameter values were determined by numerical optimization, including temperature dependence. The best fitting model was a competitive product inhibition for the two reactions in the operational range.  相似文献   

8.
Achievement of efficient enzymatic degradation of cellulose to glucose is one of the main prerequisites and one of the main challenges in the biological conversion of lignocellulosic biomass to liquid fuels and other valuable products. The specific inhibitory interferences by cellobiose and glucose on enzyme-catalyzed cellulose hydrolysis reactions impose significant limitations on the efficiency of lignocellulose conversion — especially at high-biomass dry matter conditions. To provide the base for selecting the optimal reactor conditions, this paper reviews the reaction kinetics, mechanisms, and significance of this product inhibition, notably the cellobiose and glucose inhibition, on enzymatic cellulose hydrolysis. Particular emphasis is put on the distinct complexity of cellulose as a substrate, the multi-enzymatic nature of the cellulolytic degradation, and the particular features of cellulase inhibition mechanisms and kinetics. The data show that new strategies that place the bioreactor design at the center stage are required to alleviate the product inhibition and in turn to enhance the efficiency of enzymatic cellulose hydrolysis. Accomplishment of the enzymatic hydrolysis at medium substrate concentration in separate hydrolysis reactors that allow continuous glucose removal is proposed to be the way forward for obtaining feasible enzymatic degradation in lignocellulose processing.  相似文献   

9.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with trypto-phan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cell  相似文献   

10.
The enzymatic hydrolysis of cellulose to glucose involves the formation of cellobiose as an intermediate. It has been found necessary(1) to add cellobiase from Aspergillus niger (NOVO) to the cellobiase component of Trichoderma reesei mutant Rut C-30 (Natick) cellulase enzymes in order to obtain after 48 h complete conversion of the cellobiose formed in the enzymatic hydrolysis of biomass. This study of the cellobiase activity of these two enzyme sources was undertaken as a first step in the formation of a kinetic model for cellulose hydrolysis that can be used in process design. In order to cover the full range of cellobiose concentrations, it was necessary to develop separate kinetic parameters for high- and low-concentration ranges of cellobiose for the enzymes from each organism. Competitive glucose inhibition was observed with the enzymes from both organisms. Substrate inhibition was observed only with the A. niger enzymes.  相似文献   

11.
An experimental study of cellobiose inhibition in cellulose hydrolysis by synergism of cellobiohydrolyse I and endoglucanase I is presented. Cellobiose is the structural unit of cellulose molecules and also the main product in enzymatic hydrolysis of cellulose. It has been identified that cellobiose can strongly inhibit hydrolysis reaction of cellulase, whereas it has no effect on the adsorption of cellulase on cellulose surface. The experimental data of FT-IR spectra, fluorescence spectrum and circular dichroism suggested that cellobiose can be combined with tryptophan residue located near the active site of cellobiohydrolase and then form steric hindrance, which prevents cellulose molecule chains from diffusing into active site of cellulase. In addition, the molecular conformation of cellobiohydrolase changes after cellobiose binding, which also causes most of the non-productive adsorption. Under these conditions, microfibrils cannot be separated from cellulose chains, thus further hydrolysis of cellulose can hardly proceed.  相似文献   

12.
The enzymatic hydrolysis of cellulose and lignocellulosic materials is marked by a rate decrease along the reaction time. Cellobiohydrolase slow dissociation from the substrate and its inhibition by the cellobiose produced are relevant factors associated to the rate decrease. In that sense, addition of β-glucosidases to the enzyme cocktails employed in cellulose enzymatic hydrolysis not only produces glucose as final product but also reduces the cellobiohydrolase inhibition by cellobiose. The digestive β-glucosidase GH1 from the fall armyworm Spodoptera frugiperda, hereafter called Sfβgly, containing the mutation L428V showed an increased kcat for cellobiose hydrolysis. In comparison to assays conducted with the wild-type Sfβgly and cellobiohydrolase TrCel7A, the presence of the mutant L428V increased in 5 fold the initial rate of crystalline cellulose hydrolysis and reduced to one quarter the time needed to TrCel7A produce the maximum glucose yield. As our results show that mutant L428V complement the action of TrCel7A, the introduction of the equivalent replacement in β-glucosidases is a promising strategy to reduce costs in the enzymatic hydrolysis of lignocellulosic materials.  相似文献   

13.
Cellobiase (-D-glucosidase) with a molecular weight of 100 kDa and pI 5.2 was isolated from the cellulolytic system of Penicillium verruculosum. Kinetic parameters of enzymatic hydrolysis of cellobiose, gentiobiose, sophorose, and synthetic substrates, i. e. methylumbelliferyl and p-nitrophenyl sugar derivatives were determined. Glucose and D-glucose--lactone competitively inhibited cellobiase (K i0.19 mM and 17 M, respectively). Glucosyl transfer reactions were studied with cellobiose as a single substrate and in the mixture of cellobiose and methylumbelliferyl cellobioside. The product composition was determined in these systems. The ratio of hydrolysis and transfer reaction rates for cellobiose conversion was calculated.  相似文献   

14.
Amorphous acid-swollen cellulose dyed with Reactive Orange was used to determine the relevant inhibition constants of cellulases from Trichoderma longibrachiatum by cellulose hydrolysis products (glucose and cellobiose). The method is based on the initial rate of increasing the hydrolysate absorbance (A490mn) in the presence of added product. On adding glucose, the initial rate of glucose formation from cellulose and the rate of dye release were lower than the relevant rates in the absence of added product; however, the rate of cellobiose formation did not change. On the other hand, added cellobiose inhibited the rate of cellobiose formation from dyed cellulose and the rate of increase of the hydrolysate absorbance but did not affect the glucose formation. The constants of competitive inhibition of cellulases by glucose and cellobiose were 0.072 and 0.012 M, respectively. These inhibition parameters differed from those obtained from the analysis of the progress kinetics for extended reaction times.  相似文献   

15.
Product inhibition by cellobiose decreases the rate of enzymatic cellulose degradation. The optimal reaction conditions for two Emericella (Aspergillus) nidulans-derived cellobiohydrolases I and II produced in Pichia pastoris were identified as CBHI: 52 °C, pH 4.5–6.5, and CBHII: 46 °C, pH 4.8. The optimum in a mixture of the two was 50 °C, pH 4.9. An almost fourfold increase in enzymatic hydrolysis yield was achieved with intermittent product removal of cellobiose with membrane filtration (2 kDa cut-off): The conversion of cotton cellulose after 72 h was ~19 % by weight, whereas the conversion in the parallel batch reaction was only ~5 % by weight. Also, a synergistic effect, achieving ~27 % substrate conversion, was obtained by addition of endo-1,4-β-d-glucanase. The synergistic effect was only obtained with product removal. By using pure, monoactive enzymes, the work illustrates the profound gains achievable by intermittent product removal during cellulose hydrolysis.  相似文献   

16.
Acetic acid formation in Escherichia coli fermentation   总被引:2,自引:0,他引:2  
Theoretical analysis of cellulase product inhibition (by cellobiose and glucose) has been performed in terms of the mathematical model for enzymatic cellulose hydrolysis. The analysis showed that even in those cases when consideration of multienzyme cellulase system as one enzyme (cellulase) or two enzymes (cellulase and beta-glucosidase) is valid, double-reciprocal plots, usually used in a product inhibition study, may be nonlinear, and different inhibition patterns (noncompetitive, competitive, or mixed type) may be observed. Inhibition pattern depends on the cellulase binding constant, enzyme concentration, maximum adsorption of the enzyme (cellulose surface area accessible to the enzyme), the range in which substrate concentration is varied, and beta-glucosidase activity. A limitation of cellulase adsorption by cellulose surface area that may occur at high enzyme/substrate ratio is the main reason for nonlinearity of double-reciprocal plots. Also, the results of calculations showed that material balance by substrate, which is usually neglected by researchers studying cellulase product inhibition, must be taken into account in kinetic analysis even in those cases when the enzyme concentration is rather low. (c) 1992 John Wiley & Sons, Inc.  相似文献   

17.
Kinetics of enzymatic hydrolysis of starch to high maltose syrup (by simultaneous use of -amylase and isoamylase) has been studied here. Main product of dual-enzyme system, maltose, showed a competitive inhibition effect on apparent overall activity of enzymes. Thermal inactivation behavior could be expressed by an empirical exponential function. A mathematical model developed here has described performance of an ultrafiltration reactor (UFR) system by considering effects of product inhibition, enzyme deactivation, and formation of side-product. Effects of concentrations in substrate and enzymes, with residence time of substrate on the performance of UFR has been investigated. Proposed model has been successfully verified in simulating experimental data under various conditions. Operation stability of UFR has also been studied.  相似文献   

18.
The production of sugars by enzymatic hydrolysis of cellulose is a multistep process which includes conversion of the intermediate cellobiose to glucose by β-glucosidase. Aside from its role as an intermediate, cellobiose inhibits the endoglucanase components of typical cellulase enzyme systems. Because these enzyme systems often contain insufficient concentrations of β-glucosidase to prevent accumulation of inhibitory cellobiose, this research investigated the use of supplemental immobilized β-glucosidase to increase yield of glucose. Immobilized β-glucosidase from Aspergillus phoenicis was produced by sorption at controlled-pore alumina with about 90% activity retention. The product lost only about 10% of the original activity during an on-stream reaction period of 500 hr with cellobiose as substrate; maximum activity occurred near pH 3.5 and the apparent activation energy was about 11 kcal/mol. The immobilized β-glucosidase was used together with Trichoderma reesei cellulase to hydrolyze cellulosic materials, such as Solka Floc, corn stove and exploded wood. Increased yields of glucose and greater conversions of cellobiose of glucose were observed when the reaction systems contained supplemental immobilized β-glucosidase.  相似文献   

19.
Enzymes that degrade cellulose into glucose are one of the most expensive components of processes for converting cellulosic biomass to fuels and chemicals. Cellulase enzyme Cel7A is the most abundant enzyme naturally employed by fungi to depolymerize cellulose, and like other cellulases is inhibited by its product, cellobiose. There is thus great economic incentive for minimizing the detrimental effects of product inhibition on Cel7A. In this work, we experimentally generated 10 previously proposed site‐directed mutant Cel7A enzymes expected to have reduced cellobiose binding energies (the majority of mutations were to alanine). We then tested their resilience to cellobiose as well as their hydrolytic activities on microcrystalline cellulose. Although every mutation tested conferred reduced product inhibition (and abolished it for some), our results confirm a trade‐off between Cel7A tolerance to cellobiose and enzymatic activity: Reduced product inhibition was accompanied by lower overall enzymatic activity on crystalline cellulose for the mutants tested. The tempering effect of mutations on inhibition was nearly constant despite relatively large differences in activities of the mutants. Our work identifies an amino acid in the Cel7A product binding site of interest for further mutational studies, and highlights both the challenge and the opportunity of enzyme engineering toward improving product tolerance in Cel7A. Biotechnol. Bioeng. 2016;113: 330–338. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.  相似文献   

20.
beta-Glucosidase is a key enzyme in the hydrolysis of cellulose to D-glucose. beta-Glucosidase was purified from cultures of Trichoderma reesei QM 9414 grown on wheat straw as carbon source. The enzyme hydrolyzed cellobiose and aryl beta-glucosides. The double-reciprocal plots of initial velocity vs. substrate concentration showed substrate inhibition with cellobiose and salicin. However, when p-nitrophenyl beta-D-glucopyranoside was the substrate no inhibition was observed. The corresponding kinetic parameters were: K = 1.09 +/- 0.2 mM and V = 2.09 +/- 0.52 mumol.min-1.mg-1 for salicin; K = 1.22 +/- 0.3 mM and V = 1.14 +/- 0.21 mumol.min-1.mg-1 for cellobiose; K = 0.19 +/- 0.02 mM and V = 29.67 +/- 3.25 mumol.min-1.mg-1 for p-nitrophenyl beta-D-glucopyranoside. Studies of inhibition by products and by alternative product supported an Ordered Uni Bi mechanism for the reaction catalyzed by beta-glucosidase on p-nitrophenyl beta-D-glucopyranoside as substrate. Alternative substrates as salicin and cellobiose, a substrate analog such as maltose and a product analog such as fructose were competitive inhibitors in the p-nitrophenyl beta-D-glucopyranoside hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号