首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Abstract Experiments were designed to investigate the significance of lipid A partial structures, precursor Ia (compound 406), and lipid X (compound 401) to serve as antagonists of interleukin 1 (IL-1) release from human mononuclear cells and monocytes induced by lipopolysaccharide (LPS, endotoxin) of Salmonella aborus equi or synthetic Escherichia coli lipid A (compound 506). A definite inhibition mediated by lipid A partial structures on IL-1 release induced by LPS or lipid A was found in repeated experiments. The inhibitory effect was exterted not only on IL-1 release, but also on IL-1 peptide synthesis at the intracellular level. The results also show that lipid A partial structures have suppressive effects even when added 1–4 after LPS or lipid A. We conclude from these results that lipis A partial structures (precursor Ia and lipid X) have potent immunomodulatory effects on LPS- and lipid A-induced IL-1 release and may become useful reagents to study the mechanism of interaction of LPS and lipid A with cells of the immune system.  相似文献   

2.
IL-1 induction-capacity of defined lipopolysaccharide partial structures   总被引:23,自引:0,他引:23  
Natural and synthetic lipid A as well as natural and synthetic oligosaccharide partial structures of LPS were examined in dose-response experiments to define the minimal structure necessary for IL-1 induction and release in cultures of human mononuclear cells. Wild type LPS (S. abortus equi) and rough mutant LPS was active in minimal-doses of 1 to 100 pg/ml, whereas synthetic heptaacyl and hexaacyl lipid A (Salmonella minnesota and Escherichia coli lipid A, respectively) induced IL-1 in minimal-doses of 100 to 1,000 pg/ml and 10 to 1,000 pg/ml, respectively. Nanogram amounts (0.1 to 10 ng/ml) of synthetic monodephospho partial structures of E. coli lipid A were necessary for IL-1 induction. Synthetic pentaacyl partial structures induced IL-1 very weakly. Synthetic tetraacyl and bisacyl partial structures lacking non-hydroxylated fatty acids were not active. Compared to LPS million-fold higher doses of natural and synthetic 3-deoxy-D-manno-octulosonic acid containing core oligosaccharides were necessary for IL-1 induction. Dose-response investigations with LPS and natural or synthetic partial structures established the following hierarchy in IL-1 induction-capacity: LPS greater than lipid A much greater than lipid A partial structures greater than core oligosaccharides greater than oligoacyl lipid A. Lipid A was shown here to be the portion of LPS mainly responsible for induction of IL-1 activity. The high potency of lipid A in inducing IL-1 release and the failure of the precursor Ia of lipid A to induce IL-1 production and release was also observed measuring intracellular IL-1 activity after freeze-thawing the cells. Levels of IL-1 beta mRNA in extracts of mononuclear cells correlated with biologic activity. In co-incubation experiments, precursor Ia of lipid A produced dose-dependent inhibition of production and release of IL-1 activity induced by lipid A or LPS, but not by Staphylococcus epidermidis or PHA. Incubation of cells with precursor Ia for 1h, followed by a medium change and further incubation of stimulus without precursor Ia of lipid A also resulted in inhibition. We conclude that lipid A is the main portion of LPS responsible for induction of IL-1, and that specific activation- and/or binding-mechanisms are involved in stimulation of cells with LPS and/or lipid A.  相似文献   

3.
Abstract Endotoxin (lipopolysaccharide, LPS) induces the production of mediators of inflammation, which exerts pathophysiological effects such as fever or shock in mammals. In the present study we have investigated the modulation of LPS by the synthetic non-active tetraacylated precursor Ia of lipid A (compound 406) in the induction of tumor necrosis factor (TNF), interleukin 1 (IL-1) and interleukin 6 (IL-6) in human peripheral blood mononuclear cells (PBMC) and in human peripheral blood monocytes (PBMo). PBMC stimulated with LPS released TNF in a concentration dependent manner. Release of biologically active TNF, IL-1 and IL-6 was first detectable 4 h after LPS stimulation. Compound 406 alone in all concentrations tested did not induce TNF, IL-1 or IL-6 release, intracellular TNF or IL-1β, or mRNA for TNF or IL-1. Added to PBMC 1 h before LPS compound 406 enhanced or suppressed TNF release and suppressed IL-1 and IL-6 release depending on the ratio of concentrations between stimulator (LPS) and modulator (compound 406). In contrast to LPS stimulation alone TNF, IL-1 and IL-6 release in presence of compound 406 was delayed and first detectable after 6 to 8 h. Compound 406 was able to suppress LPS-induced intracellular TNF and IL-1β in PBMC. Added to PBMo 1 h before LPS it totally inhibited the production of mRNA for TNF and IL-1. When added to PBMC 1 h after LPS, TNF release was suppressed in a concentration-dependent way and release of biologically active TNF, IL-1 and IL-6 could again be detected for the first time after 4 h. Compound 406 was not able to inhibit phorbol 12-myristate 13-acetate (PMA)-induced TNF and IL-1 release in PBMo which suggests that its modulating effect is LPS-specific. This study provides evidence that the modulating effect of compound 406 on the LPS induction of TNF, IL-, 1 and IL-6 could be due to competitive binding.  相似文献   

4.
Abstract Natural partial structures of lipopolysaccharide (LPS) as well as synthetic analogues and derivatives of lipid A were compared with respect to inhibit the binding of 125I-labelled Re-chemotype LPS to mouse macrophage-like J774.1 cells to induce cytokine-release in J774.1 cells. LPS, synthetic Escherichia coli -type lipid A (compound 506) and tetraacyl percursor Ia (compound 406) inhibited the binding of 125I-LPS to macrophage-like J774.1 cells and induced the release of tumor ncerosis factor α (TNFα) and interleukin 6 (IL-6). Deacylated R-chemotype LPS preparations were completely inactive in inhibiting binding and in inducing cytokine-release. Among tetraacyl compounds, the inhibition-capacity of LPS-binding was in decreasing order: PE-4 ( α -phosphonooxyethyl analogue of 406)>406⪢>404(4′-monophosphoryl partial structure of 406)>405 (1-monophosphoryl partial structure of 406). In the case of hexaccyl preparations, compounds 506, PE-1 (α-phosphonooxyethyl analogue of 506) and PE-2 (differing from PE-1 in having 14:0 at positions 2 and 3 of the reducing GlcN) inhibited LPS-binding and induced cytokine release equally well, whereas preparation PE-3 (differing from PE-2 in containing a β-phosphhonooxyethyl group) showed a substantially lower capacity in binding-inhibition and cytokine-induction. The conclusion is that chemical changes in the hydrophilic lipid A backbone reduce the capacity of lipid A to bind to cells, whereas the number of fatty acids determines the capacity of lipid A to activate cells. These results indicate that the bisphosphorylated hexosamine backbone of lipid A is essential for specific binding of LPS to macrophages and that the acylation pattern plays a critical role for LPS-promoted cell activation, i.e. cytokine induction.  相似文献   

5.
Bacterial lipopolysaccharide (LPS) induces the production of various inflammatory cytokines and the inducibility is considered attributable to the glycolipid part of LPS called lipid A. We report an in vitro model in which lipid A is not necessarily a minimal structure for the LPS activity. Vitamin D3-differentiated THP-1 cells, cultured human monocytic leukemia cells, produced a high level of interleukin-6 (IL-6) by stimulating LPS from Escherichia coli O111:B4, but not by stimulating synthetic E. coli-type lipid A (compound 506), E. coli Re mutant LPS (ReLPS), or alkali-treated LPS. The induction by LPS was inhibited by the anti-CD14 antibodies or by the synthetic lipid A precursor (compound 406). An alkali-treated LPS or compound 506 partially inhibited the LPS-induced IL-6 production. These facts suggest that lipid A alone is not sufficient for the IL-6-inducing activity, but the polysaccharide part in LPS contributes or acts as a co-factor for activation of differentiated THP-1 cells.  相似文献   

6.
Lipid A, the membrane anchor portion of LPS, is responsible for the endotoxin activity of LPS and induces many inflammatory responses in macrophages. Monophosphoryl lipid A (MPL), a lipid A derivative lacking a phosphate residue, induces potent immune responses with low toxicity. To elucidate the mechanism underlying the low toxicity of MPL, we examined the effects of MPL on the secretion of proinflammatory cytokines by mouse peritoneal macrophages, a murine macrophage-like cell line (RAW 264.7), and a human macrophage-like cell line (THP-1). MPL enhanced the secretion of TNF-alpha, but not that of IL-1beta, whereas Escherichia coli-type lipid A (natural source-derived and chemically synthesized lipid A) enhanced the secretion of both cytokines. Although MPL enhanced the levels of IL-1beta mRNA and IL-1beta precursor protein to levels similar to those induced by lipid A, IL-1beta precursor processing in MPL-treated cells was much lower than that in E. coli-type lipid A-treated ones. Moreover, MPL, unlike E. coli-type lipid A, failed to induce activation of caspase-1, which catalyzes IL-1beta precursor processing. These results suggest that an immune response without activation of caspase-1 or secretion of IL-1beta results in the low toxicity of this adjuvant.  相似文献   

7.
LPS-binding protein (LBP) binds with high affinity (Kd approximately equal to 10(-9) M) to lipid A of LPS isolated from rough (R)- or smooth (S)-form Gram-negative bacteria as well as to lipid A partial structures such as precursor IVA. To define the role of LBP in regulating responses to LPS we have examined TNF release in rabbit peritoneal exudate macrophages (M phi) stimulated with LPS or with complete or partial lipid A preparations in the presence or absence of LBP. In the presence of LBP, M phi showed increased sensitivity to S- and R-form LPS as well as synthetic lipid A. Compared with LPS or lipid A, up to 1000-fold greater concentrations of partial lipid A structures were required to induce TNF production. However, consistent with our previous observations that these structures bind to LBP, TNF production was increased in the presence of LBP. In contrast, LBP did not enhance or inhibit TNF production produced by heat-killed Staphylococcus aureus, peptidoglycan isolated from S. aureus cell walls, or PMA. Potentiated M phi responsiveness to LPS was observed with as little as 1 ng LBP/ml. Heat-denatured LBP (which no longer binds LPS), BPI (an homologous LPS-binding protein isolated from neutrophils), or other serum proteins were without effect. LBP-treated M phi also showed a more rapid induction of cytokine mRNA (TNF and IL-1 beta), higher steady-state mRNA levels and increased TNF mRNA stability. These data provide additional evidence that LBP is part of a highly specific recognition system controlling M phi responses to LPS. The effects of LBP are lipid A dependent and importantly, extend to LPS preparations isolated from bacteria of R- and S-form phenotype.  相似文献   

8.
N2,O3-Diacylglucosamine 1-phosphate (lipid X), a monosaccharide precursor of Escherichia coli lipid A, was used to stimulate RAW 264.7 macrophage tumor cells, and the effects on macrophage phospholipid metabolism were examined. The addition of E. coli lipid X to the medium of cells that had been uniformly labeled with 32Pi resulted in a 4-8-fold increase in the level of lysophosphatidylinositol. This effect was maximal at 5 microM lipid X. Lysophosphatidylinositol levels reached a maximum 45 min after stimulation, followed by a gradual decline to near normal levels within 2 h. The formation of lysophosphatidylinositol was dependent upon extracellular calcium and was almost completely inhibited when cycloheximide was added at the time of stimulation. The addition of the disaccharide lipid A precursor IVA, commercial lipopolysaccharide (1 microgram/ml), phorbol 12-myristate 13-acetate (10(-7) M), or calcium ionophore A23187 (10(-6) M) to these cells resulted in a similar increase in lysophosphatidylinositol levels, but phosphatidic acid was inactive. The stimulation by IVA and phorbol myristate acetate was blocked by cycloheximide, but the stimulation by lipopolysaccharide was only partially blocked. The stimulation by A23187 was unaffected by cycloheximide. The increase in lysophosphatidylinositol levels might be related to the stimulation of arachidonate release and prostaglandin synthesis that is also observed in cells treated with lipid A precursors. The disaccharide precursor, IVA, was at least 100 times more effective than lipid X at stimulating lysophosphatidylinositol formation and prostaglandin release. The relative ability of lipid X and IVA to stimulate these cells correlated well with their effects on other lipopolysaccharide-responsive systems. Macrophage tumor cells also had the ability to inactivate lipid X by dephosphorylating it.  相似文献   

9.
Lipid X, a monosaccharide biosynthetic precursor of lipid A, has been chemically synthesized and was shown to induce bone marrow-derived macrophages to release tumor necrosis factor (TNF) in vitro. However, relatively high amounts of lipid X were necessary for induction, and the levels of TNF were much less than those induced by small amounts of lipid A itself or LPS. Lipid X prepared by extraction of Escherichia coli mutants induced higher levels of TNF than the chemically synthesized material, but this is probably partially due to amounts of impurities in the extracted material. Pretreatment of macrophages with IFN-gamma resulted in the release of higher amounts of TNF on subsequent induction with either LPS or lipid X. In contrast, pretreatment of macrophages with LPS induced hyporesponsiveness for TNF production on subsequent rechallenge with LPS. Lipid X, on the other hand, was incapable of making macrophages hyporesponsive for TNF production.  相似文献   

10.
The stimulation of both THP-1 and U937 human-derived cells by Salmonella lipid A preparations from various strains, as assessed by TNF-alpha induction and NF-kappaB activation, was found to be very low (almost inactive) compared with Escherichia coli lipid A, but all of the lipid As exerted strong activity on mouse cells and on Limulus gelation activity. Experiments using chemically synthesized E. coli-type hexaacylated lipid A (506) and Salmonella-type heptaacylated lipid A (516) yielded clearer results. Both lipid A preparations strongly induced TNF-alpha release and activated NF-kappaB in mouse peritoneal macrophages and mouse macrophage-like cell line J774-1 and induced Limulus gelation activity, although the activity of the latter was slightly weaker than that of the former. However, 516 was completely inactive on both THP-1 and U937 cells in terms of both induction of TNF-alpha and NF-kappaB activation, whereas 506 displayed strong activity on both cells, the same as natural E. coli LPS. In contrast to the action of the lipid A preparations, all the Salmonella LPSs also exhibited full activity on human cells. However, the polysaccharide portion of the LPS neither exhibited TNF-alpha induction activity on the cells when administered alone or together with lipid A nor inhibited the activity of the LPS. These results suggest that the mechanism of activation by LPS or the recognition of lipid A structure by human and mouse cells may differ. In addition, both 516 and lipid A from Salmonella were found to antagonize the 506 and E. coli LPS action that induced TNF-alpha release and NF-kappaB activation in THP-1 cells.  相似文献   

11.
Lipid X, an early precursor in the biosynthesis of lipid A has been reported to directly induce cytokine release in macrophages but also to inhibit endotoxin-induced tumor necrosis factor (TNF) induction. In this report we provide evidence that these conflicting results could be due to contaminants present in different batches of lipid X used. Thus, in an apparently pure batch of crystalline lipid X as obtained by a published procedure (Macher, I. (1987) Carbohydr. Res. 262, 79-84) small amounts of N,O-acylated disaccharide-1-phosphates could be identified. Their isolation was achieved by gel filtration on Sephadex LH-20 and further analysis of fractions showing elevated limulus amebocyte lysate values by thin layer chromatography and reverse-phase high performance liquid chromatography (HPLC) in combination with bioassays. Identification of immunostimulatory by-products was possible by testing HPLC-fractions for TNF-induction in bone marrow-derived mouse macrophages. Applying these procedures a disaccharide-1-phosphate, containing four 3(R)-hydroxymyristic acids at positions 2, 3, 2', 3', was identified as the main immunostimulatory side product. Two isomeric hydrolysis products of this compound with only three 3(R)-hydroxymyristic acid moieties attached to the disaccharide-1-phosphate were also identified. Surprisingly, these compounds behave quite differently in the TNF induction test. The disaccharide-1-phosphate, acylated at positions 2, 2', 3', is a very potent inducer of TNF-release whereas the corresponding isomer containing the 3(R)-hydroxymyristic acids in positions 2, 3, 2', does not induce TNF release, but strongly inhibits TNF release as induced by the former compound. Thus, contamination of "pure" lipid X with immunostimulatory or immunoinhibitory impurities may explain the divergent pharmacological profiles which were attributed to synthetic lipid X.  相似文献   

12.
C3H/HeJ mice possess a genetic lesion that renders them significantly less responsive to the biologic effects of protein-free lipopolysaccharide (LPS) preparations, and more specifically, to the lipid A region of the LPS molecule. The in vivo manifestations of this mutation are also reflected in vitro in that cells derived from this mouse strain fail to respond to LPS when compared with cells derived from fully endotoxin-responsive mouse strains. The precise nature of this gene defect has not yet been established. In this study, we have examined in vitro the biologic activities of a structurally less complex "lipid A precursor" molecule, produced by a conditionally lethal, temperature-sensitive mutant of Salmonella typhimurium. In contrast to the intact LPS or wild-type lipid A extracted from the parental strain of Salmonella typhimurium, the lipid A precursor induced a highly significant, polymyxin B-inhibitable mitogenic response in splenic cultures derived from LPS-hyporesponsive C3H/HeJ and C57BL/10ScN (nu/nu) mice. In addition, the lipid A precursor was found to stimulate cultures of C3H/HeJ macrophages to produce significant levels of both interleukin 1 (IL 1, previously referred to as "lymphocyte activating factor" or "LAF") and prostaglandins of the E series (PGE). These findings suggest the possibility that the defect in endotoxin responsiveness exhibited by C3H/HeJ mice may be related to a defect in the processing of wild-type lipid A or LPS to a suitably stimulatory form that is structurally related to the lipid A precursor molecule.  相似文献   

13.
A monosaccharide precursor of Escherichia coli lipid A, designated lipid X, which is a diacylglucosamine 1-phosphate with beta-hydroxymyristoyl groups at positions 2 and 3, was shown to have the ability to induce the production of tumor necrosis factor (TNF)-like tumor-cytotoxic factor by a murine macrophage-like cell line, J774.1. This cytotoxic factor was released from J774.1 cells grown in the presence of lipid X and related compounds, and it was assayed as to its lytic activity against [3H]thymidine-labeled L929 cells. Dose-response studies revealed that lipid X induced the production of smaller amounts of the tumor-cytotoxic factor than LPS at low concentrations, but it induced that of considerable amounts at and over 1 microgram/ml. Elimination of 1-phosphate or 3-O-beta-hydroxymyristoyl group from lipid X completely prevented the induction of producing this factor by the macrophages. Therefore, it is suggested that both 1-phosphate and 3-O-beta-hydroxymyristoyl groups are essential for the biologic activity of lipid X, as to the induction of the tumor-cytotoxic factor production in the macrophages.  相似文献   

14.
ATP stimulation of cell surface P2X7 receptors results in cytolysis and cell death of macrophages. Activation of this receptor in bacterial lipopolysaccharide (LPS)-activated macrophages or monocytes also stimulates processing and release of the cytokine interleukin-1beta(IL-1beta) through activation of caspase-1. The cytokine interleukin 18 (IL-18) is also cleaved by caspase-1 and shares pro-inflammatory characteristics with IL-1beta. The objective of the present study was to test the hypothesis that IL-1beta, IL-18, and/or caspase-1 activation contribute directly to macrophage cell death induced by LPS and ATP. Macrophages were cultured from normal mice or those in which genes for the P2X7 receptor, IL-1beta, IL-1alpha, IL-18, or caspase-1 had been deleted. Our data confirm the importance of the P2X7 receptor in ATP-stimulated cell death and IL-1beta release from LPS-primed macrophages. We demonstrate that prolonged stimulation with ATP leads to cell death, which is partly dependent on LPS priming and caspase-1, but independent of cytokine processing and release. We also provide evidence that LPS priming of macrophages makes them highly susceptible to the toxic effects of brief exposure to ATP, which leads to rapid cell death by a mechanism that is dependent on caspase-1 but, again, independent of cytokine processing and release.  相似文献   

15.
Abstract Porphyromonas gingivalis 381 lipid A possesses 1-phospho β(1–6)-linked glucosamine disaccharide with 3-hydroxy-15-methylhexadecanoyl and 3-hexadecanoyloxy-15-methylhexadecanoyl groups at the 2- and 2′-positions, respectively. P. gingivalis lipid A indicated lower activities in inducing interleukin-1β (IL-1β) mRNA expression, pro-IL-1β protein synthesis and IL-1β production than those of synthetic Escherichia coli lipid A (compound 506) in human peripheral blood mononuclear cells (PBMC). The induction of IL-6 mRNA and IL-6 synthesis by P. gingivalis lipid A were comparable to those of compound 506. Herbimycin A, H-7 and H-8, inhibitors of tyrosine kinase, protein kinase C and cyclic nucleotide-dependent protein kinase, inhibited P. gingivalis lipid A- and compound 506-induced IL-1β and IL-6 synthesis. W-7, an inhibitor of calmodulin (CaM) kinase, inhibited only P. gingivalis lipid A-induced IL-1β production. The result suggests that the CaM kinase-dependent cascade is involved in the down-regulation of IL-1β production by P. gingivalis lipid A. P. gingivalis lipid A and compound 506 also functioned in the induction of tyrosine and serine/threonine phosphorylation of several proteins in PBMC. P. gingivalis lipid A inhibited specific binding of fluorescein-labelled E. coli LPS to the PBMC. The nontoxic lipid A of P. gingivalis , having a chemical structure different from toxic compound 506, appears to induce the up- and down-regulation of the differential cytokine-producing activities following the activation of various intracellular enzymes including the CaM kinase through the common receptor sites of LPS.  相似文献   

16.
We have previously reported that IL-3, a cytokine produced by both Th1 and Th2 type CD4+ T cells, displays macrophage-activating potential. IL-3, like IFN-gamma, readily induced functions related to Ag presentation (e.g., Ia and lymphocyte function-associated Ag-1 expression). However, in contrast to the response elicited by IFN-gamma, tumor cytotoxicity was not induced by IL-3. In this paper we have evaluated the capacity of IL-3 to regulate IL-1 expression. Our data demonstrate that although IL-3 alone was unable to induce the production of substantial IL-1 bioactivity in peritoneal exudate cells, it contributed synergistically to the induction of IL-1 bioactivity in the presence of suboptimal doses of LPS. It was of interest that IFN-gamma, which can also interact synergistically with LPS, was unable to complement the partial signals provided by IL-3 for the expression of IL-1 bioactivity, suggesting that IL-3 and IFN-gamma may be providing similar stimulatory signals in this respect. Our studies on the mechanism of synergy between IL-3 and LPS indicated that the effect of LPS did not appear to be mediated by the well-characterized LPS-inducible cytokines of macrophage origin (i.e., IL-1, alpha and beta, TNF-alpha, and IL-6). The best characterized function of IL-3 is its multicolony-stimulating activity as a CSF; in this context we also studied granulocyte-macrophage CSF and noted that it behaves similarly to IL-3 in that it can synergistically contribute to IL-1 induction. A similar, but more dramatic induction of IL-1 synthesis in response to IL-3 was demonstrated by the P388.D1 murine macrophage cell line. The kinetics and the molecular mechanism of the response of P388.D1 to IL-3 indicate several unique features of IL-3-induced IL-1 expression: 1) IL-3 itself induced IL-1 mRNA expression, which was unaccompanied by substantial production of bioactivity, either cell-associated or secreted into the culture supernatant; 2) IL-3 synergized with suboptimal doses of LPS to induce not only heightened IL-1 mRNA levels but bioactivity as well; and 3) IL-3, when combined with LPS, altered the kinetics of IL-1 message and bioactive protein production in response to LPS: IL-3 and LPS induced an early release (3 to 7 h poststimulation) of the IL-1 protein as well as a second peak of mRNA and bioactivity (at 12 to 36 h), which was not observed in response to either IL-3 or LPS alone.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Here we report that IL-3 (also referred to as multi-CSF because of its colony-stimulating activity on a variety of hemopoietic cell lineages) can function as a macrophage-activating factor (MAF). IL-3 was able to regulate the expression of class II MHC Ag and the cellular interaction molecule lymphocyte function-associated Ag-1 on the surface of murine peritoneal exudate cells. The kinetics of IL-3-induced Ia expression appeared to be distinct from that induced by either IFN-gamma, IL-4, or granulocyte-macrophage-CSF. IL-3 was also distinguished from these factors by the finding that it did not induce macrophage tumoricidal activity. In addition to its inherent MAF activities, IL-3 also showed a marked synergy with low doses of LPS (0.05 to 0.5 ng/ml) as well as IFN-gamma in Ia induction. When lymphocyte function-associated Ag-1 expression was evaluated, the effects of these stimuli appeared to be only additive. Although LPS has been shown to inhibit IFN-gamma-induced Ia expression, in our experiments this property of LPS is manifest only when present at doses greater than or equal to 50 ng/ml. At lower concentrations, LPS potentiated both IL-3- and IFN-gamma-induced class II MHC Ag expression. Data presented here also suggest that the synergistic interactions between low doses of LPS and IL-3 are not mediated by known LPS-inducible cytokines of macrophage origin, because rIL-1, TNF-alpha, or IL-6 did not enhance the response to IL-3. Because IL-3 can also participate in the regulation of IL-1 expression, it appears that IL-3 can function as a MAF which selectively regulates the accessory cell characteristics required for Ag presentation, as opposed to the cytolytic functions of the macrophage.  相似文献   

18.
A synthetic lipid A of Porphyromonas gingivalis strain 381 (compound PG-381), which is similar to its natural lipid A, demonstrated no or very low endotoxic activities as compared to Escherichia coli-type synthetic lipid A (compound 506). On the other hand, compound PG-381 had stronger hemagglutinating activities on rabbit erythrocytes than compound 506. Compound PG-381 also induced mitogenic responses in spleen cells from lipopolysaccharide (LPS)-hyporesponsive C3H/HeJ mice, as well as LPS-responsive C3H/HeN mice. The addition of polymyxin B resulted in the inhibition of mitogenic activities, however, compound 506 did not show these capacities. Additionally, compound PG-381 showed a lower level of activity in inducing cytokine production in peritoneal macrophages and gingival fibroblasts from C3H/HeN mice, but not C3H/HeJ mice, in comparison to compound 506. Thus, this study demonstrates that the chemical synthesis of lipid A, mimicking the natural lipid A portion of LPS from P. gingivalis, confirms its low endotoxic potency and immunobiological activity.  相似文献   

19.
Lipopolysaccharide (LPS) endotoxin is implicated as the bacterial product responsible for the clinical syndrome of Gram-negative septicemia. Although the lipid A domain of LPS appears to be responsible for the toxicity of endotoxin, lipid A from the photosynthetic bacterium Rhodobacter sphaeroides (RSLA) and a disaccharide precursor of lipid A from enteric bacteria, termed lipid IVA, have little activity on human cells. Using the human promonomyelocytic cell line THP-1 and human monocytic cells, we now show that both lipid IVA and RSLA are antagonists of LPS. Complete, apparently competitive, inhibition of LPS activity is possible at a 10-100-fold excess of antagonist, as judged by measuring the release of cytokines and prostaglandin E2. Both antagonists prevent monocyte stimulation by endotoxin extracted from a variety of Gram-negative bacteria. Cells pretreated with either inhibitor and subsequently washed still show attenuated responses to LPS. Stimulation of monocytes by whole Gram-negative bacteria is also antagonized in a dose-dependent manner. Lipid X has no inhibitory effect in the same dose range as lipid IVA and RSLA. These findings rule out LPS sequestration as the explanation for the observed antagonism. Neither inhibitor alters monocyte stimulation by phorbol 12-myristate 13-acetate, Staphylococcus aureus, or purified protein derivative, demonstrating specificity for LPS. Although RSLA appears to inhibit LPS when tested with macrophages from both humans and mice, lipid IVA had the unique ability to act as an LPS antagonist with human-derived cells but to exhibit LPS-like effects with murine-derived cells. Like LPS, lipid IVA stimulated the release of both tumor necrosis factor alpha and arachidonic acid from murine-derived RAW 264.7 macrophage tumor cells. The range of concentrations necessary for lipid IVA to induce LPS-like effects in murine cells was similar to that necessary to antagonize the actions of LPS in human monocytes. The agonist activities of lipid IVA were completely inhibitable by RSLA. This unique species-dependent pharmacology observed with lipid IVA may reflect differences between human and murine LPS receptors. RSLA and lipid IVA may be useful in defining the role of LPS in Gram-negative bacterial infections and may prove to be prototypical therapeutic agents for the treatment of Gram-negative septicemia.  相似文献   

20.
Lipid X, a monosaccharide precursor of the lipid A component of LPS, has been found to antagonize LPS-induced priming of human neutrophils in a manner consistent with competitive inhibition. In this investigation, the inhibition of neutrophil priming by lipid A analogs was found to be specific for LPS-induced priming. Priming of neutrophils by TNF, IL-8, and C5a were all unaffected by increasing concentrations of 3-aza-lipid X-4-phosphate (compound 3), a monosaccharide LPS-antagonist. Unlike lipid X, the pattern of antagonism exhibited by some monosaccharide LPS-antagonists was noncompetitive-like. The relationship between the chemical structure and inhibition pattern was found to be complex and not simply related to the type of acyl linkage at the C-3 position of the glucosamine backbone. Lipid A analogs were found to antagonize calcium ionophore A23187-stimulated leukotriene B4 (LTB4) production from LPS-primed neutrophils in a pattern of inhibition qualitatively similar to that seen with FMLP-stimulated O2- production. Resting and FMLP-stimulated (peak) cytosolic-free calcium levels did not differ significantly between unprimed and LPS-primed neutrophils, (p = 0.67 and p = 0.97, respectively). Furthermore, antagonism of LPS-mediated priming by 3-aza-lipid X-4-phosphate (compound 3) could not be explained by changes in intracellular calcium flux despite marked inhibition of O2- production (p less than 0.0001). Thus, lipid A analogs antagonize only LPS-induced priming and the pattern of inhibition is dependent on the chemical structure. Inhibition of LPS-induced priming by lipid A analogs may involve an early step in the signal transduction pathway common to both O2- and LTB4 generation, but independent of intracellular calcium concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号