首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new rapid method for plasmid transformation of Escherichia coli K-12 cells has been devised. It consists in application of plasmid pMB9 DNA to the surface of an agar medium with 0.05 M CaCl2 and tetracycline (50 micrograms/ml). The recipient cells treated with nitrosoguanidine were drifted on by sectors on the plates with pMB9 DNA. The method enabled the obtaining of 12 mutants with high efficiency of plasmid transformation.  相似文献   

2.
L-Serine-sensitive mutants of Escherichia coli K-12   总被引:7,自引:7,他引:0       下载免费PDF全文
While attempting to isolate d-serine-sensitive mutants of Escherichia coli K-12, we found a class of mutants sensitive to low concentrations of l-serine (10 to 25 mug/ml).  相似文献   

3.
Potassium-dependant mutants of Escherichia coli K-12   总被引:28,自引:14,他引:14  
Mutants of Escherichia coli K-12 that grow more slowly in media containing low concentrations of K have been isolated. All independent mutants of this type which have been studied carry a mutation in a small region of the bacterial chromosome between the supE and gal loci. The growth rate of the mutants is the same as that of the parental strains in medium containing more than 1 mm K, but is only 50% that of the parent when the K concentration is reduced to 0.1 mm. The mutants do not appear to have a primary alteration in K transport, and are therefore referred to as K-dependent. The abbreviation kdp is proposed for this class of mutant.  相似文献   

4.
The flavodoxins are flavin mononucleotide-containing electron transferases. Flavodoxin I has been presumed to be the only flavodoxin of Escherichia coli, and its gene, fldA, is known to belong to the soxRS (superoxide response) oxidative stress regulon. An insertion mutation of fldA was constructed and was lethal under both aerobic and anaerobic conditions; only cells that also had an intact (fldA(+)) allele could carry it. A second flavodoxin, flavodoxin II, was postulated, based on the sequence of its gene, fldB. Unlike the fldA mutant, an fldB insertion mutant is a viable prototroph in the presence or absence of oxygen. A high-copy-number fldB(+) plasmid did not complement the fldA mutation. Therefore, there must be a vital function for which FldB cannot substitute for flavodoxin I. An fldB-lacZ fusion was not induced by H(2)O(2) and is therefore not a member of the oxyR regulon. However, it displayed a soxS-dependent induction by paraquat (methyl viologen), and the fldB gene is preceded by two overlapping regions that resemble known soxS binding sites. The fldB insertion mutant did not have an increased sensitivity to the effects of paraquat on either cellular viability or the expression of a soxS-lacZ fusion. Therefore, fldB is a new member of the soxRS (superoxide response) regulon, a group of genes that is induced primarily by univalent oxidants and redox cycling compounds. However, the reactions in which flavodoxin II participates and its role during oxidative stress are unknown.  相似文献   

5.
6.
7.
8.
Hemin-deficient mutants of Escherichia coli K-12.   总被引:32,自引:16,他引:16  
  相似文献   

9.
Actinomycin sensitive mutants of Escherichia coli K-12   总被引:1,自引:0,他引:1  
Summary Actinomycin sensitive mutants of E. coli K12 have been isolated and shown to have pleiotropic defects in the fermentation of sugars. The locus of a gene controlling actinomycin resistance is very close to that of the lactose gene.  相似文献   

10.
11.
Assembly-defective OmpC mutants of Escherichia coli K-12.   总被引:1,自引:0,他引:1       下载免费PDF全文
X Xiong  J N Deeter    R Misra 《Journal of bacteriology》1996,178(4):1213-1215
Novel ompC(Dex) alleles were utilized to isolate mutants defective in OmpC biogenesis. These ompC(Dex) alleles also conferred sensitivity to sodium dodecyl sulfate (SDS), which permitted the isolation of SDS-resistant and OmpC-specific phage-resistant mutants that remained Dex+. Many mutants acquired resistance against these lethal agents by lowering the OmpC level present in the outer membrane. In the majority of these mutants, a defect in the assembly (metastable to stable trimer formation) was responsible for lowering OmpC levels. The assembly defects in various mutant OmpC proteins were caused by single-amino-acid substitutions involving the G-39, G-42, G-223, G-224, Q-240, G-251, and G-282 residues of the mature protein. This assembly defect was correctable by an assembly suppressor allele, asmA3. In addition, we investigated one novel OmpC mutant in which an assembly defect was caused by a disulfide bond formation between two nonnative cysteine residues. The assembly defect was fully corrected in a genetic background in which the cell's ability to form disulfide bonds was compromised. The assembly defect of the two-cysteine OmpC protein was also mended by asmA3, whose suppressive effect was not achieved by preventing disulfide bond formation in the mutant OmpC protein.  相似文献   

12.
13.
Summary Mutants of Escherichia coli K-12 resistant to a threonine analogue (-amino--hydroxy valeric acid) were predominantly resistant to ethionine and overproduced both threonine and methionine (2 mg/ml each). Novelty of the mutants is discussed.  相似文献   

14.
Photoreactivation in phr mutants of Escherichia coli K-12.   总被引:4,自引:3,他引:1       下载免费PDF全文
We have investigated the genetics of photoreactivation in Escherichia coli K-12. We found that strains with point mutations or deletions in the phr gene showed a significant residual level of photoreactivation after exposure to large fluences of photoreactivating light. It had been previously proposed that a gene in the gal-att lambda interval is also involved in photoreactivation and that the residual photoreactivating activity might be due to this so-called phrA gene located at this interval. We found that deletions of the gal-att lambda region had no effect on either the rate or the final extent of photoreactivation observed in phr+ cells or phr mutants; however strains carrying the delta (gal-att lambda) deletions displayed increased sensitivity to near-UV radiation.  相似文献   

15.
Thymidine-requiring strains of Escherichia coli isolated by trimethoprim selection often simultaneously acquire the ability to suppress bacteriophage T4 nonsense mutations. Suppression is lost in Thy+ revertants and recombinants, but is sometimes retained in thyA plasmid-bearing transformants. Suppression is restricted in Strr derivatives of the Thy- mutants, indicating that suppression occurs at the level of translation.  相似文献   

16.
Chemical analyses of the carbohydrate composition of lipopolysaccharides (LPS) from a number of LPS mutants were used to propose a schematic composition for the LPS from Escherichia coli K-12. The formula contains four regions: the first consists of lipid A, ketodeoxyoctonoic acid, and a phosphorous component; the second contains only heptose; the third only glucose; and the fourth additional glucose, galactose, and rhamnose. LPS from E. coli B may have a similar composition but lacks the galactose and rhamnose units. A set of LPS-specific bacteriophages were used for comparing three mutants of Salmonella with a number of LPS mutants of E. coli K-12. The results confirm that there are basic similarities in the first and second regions of the LPS structure; they also support the four region divisions of the LPS formula. Paper chromatography was used for characterization of 32-P-labeled LPS from different strains of E. coli and Salmonella. The Rf values for LPS varied from 0.27 to 0.75 depending on the amounts of carbohydrates in the molecule. LPS from all strains studied was homogenous except for strain D31 which produced two types of LPS. Mild acid hydrolysis of labeled LPS liberated lipid A and two other components with phosphate, one of which was assigned to the first region. It is suggested that paper chromatography can be used in biosynthetic studies concerning regions 2 to 4.  相似文献   

17.
Escherichia coli K-12 mutants deficient in uracil-DNA glycosylase.   总被引:27,自引:14,他引:13       下载免费PDF全文
A new assay specific for uracil-DNA glycosylase is described, Escherichia coli mutants partially and totally deficient in uracil-DNA glycosylase activity have been isolated by using this assay in mass-screening procedures. These have been designated ung mutants. The ung gene maps between tyrA and nadB on the E. coli chromosome. T4 phage containing uracil in their DNA grow on the most glycosylase-deficient hosts but are unable to grow on wild-type bacteria. This provides a simple spot test for the ung genotype. The ung mutants show slightly higher rates of spontaneous mutation to antibiotic resistance. Taken together, these results suggest a central role for uracil-DNA glycosylase in the initiation of an excision repair pathway for the exclusion of uracil from DNA.  相似文献   

18.
Two F- mutants deficient in conjugation with F-donors have been characterized. They map at about 83 minut position, show resistance to T3 and T7 bacteriophages, and form mating aggregates in the liquid medium with lowered efficiency. Mutants have no detectable alterations in their outer membrane protein composition.  相似文献   

19.
Synthesis of linear plasmid multimers in Escherichia coli K-12.   总被引:40,自引:18,他引:22       下载免费PDF全文
Linear plasmid multimers were identified in extracts of recB21 recC22 strains containing derivatives of the ColE1-type plasmids pACYC184 and pBR322. A mutation in sbcB increases the proportion of plasmid DNA as linear multimers. A model to explain this is based on proposed roles of RecBC enzyme and SbcB enzyme (DNA exonuclease I) in preventing two types of rolling-circle DNA synthesis. Support for this hypothesis was obtained by derepressing synthesis of an inhibitor of RecBC enzyme and observing a difference in control of linear multimer synthesis and monomer circle replication. Reinitiation of rolling-circle DNA synthesis was proposed to occur by recA+-dependent and recA+-independent recombination events involving linear multimers. The presence of linear plasmid multimers in recB and recC mutants sheds new light on plasmid recombination frequencies in various mutant strains.  相似文献   

20.
The pore properties of PhoE protein channels in the outer membrane of a lipoprotein-deficient mutant and in a mutant with heptose-deficient lipopolysaccharide were investigated. The absence of lipoprotein neither affects the rate of permeation of glucose 6-phosphate or of the beta-lactam antibiotic cephsulodin through the PhoE pore nor the inhibition of cephsulodin permeation by polyphosphate. In contrast, heptose deficiency results in a 6- to 8-fold increase in the rates of permeation of glucose 6-phosphate and cephsulodin. Possible explanations for these data are discussed. It is argued that the lipopolysaccharide structure synthesized under phosphate limitation may be similar to that of the heptoseless mutant and hence that not only the structure of the PhoE protein pore but also the structure of the lipopolysaccharide may promote the uptake of Pi and Pi-containing solutes under phosphate limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号