共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
普通小麦:华山新麦草异代换系的选育及细胞遗传学研究 总被引:17,自引:5,他引:17
利用缺体小麦-华山新麦草七倍体杂种(2n=49,AABBDDN)杂交,F1再瑟相应的缺体小麦回交2次,在BC2F1镜检选出2n=41的植株,同时套代自交,选育出5A和3D两种异代换系。单体找换植侏自交产生二体代换植侏的频率为23.16%。5A代换植侏在减数分裂中期Ⅰ21Ⅱ的出现频率平均为84.52%,3D代换植侏21Ⅱ的出现频率平均为62.61%。异代换系均生长旺盛,结实正常,说明异染色体能较好地 相似文献
3.
抗全蚀病小麦-华山新麦草中间材料H8911的细胞遗传学研究与利用 总被引:8,自引:1,他引:8
抗小麦全蚀病中间材料H8911(BC1F1)是通过小麦与华山新麦草杂种幼胚培养及杂种F1(ABDN2n=28)再与小麦回交后得到的。根尖细胞染色体数目49条,花粉母细胞减数分裂中期Ⅰ,染色体构型为20.85(19~21)Ⅱ 7.30(7~11)Ⅰ,21Ⅱ 7Ⅰ的细胞占86.67%。BC1F2和BC1F3体细胞染色体数目范围分别为45~53和44~52,49条染色体的植株类型分别占30.19%和27.50%,华山新麦草染色体丢失率分别为11.85%和13.14%;花粉母细胞减数分裂中期Ⅰ,染色体构型分别为20.62(18~22)Ⅱ 7.64(5~13)Ⅰ 0.04(0~1)Ⅲ和20.53(17~22)Ⅱ 7.79(5~15)Ⅰ 0.05(0~1)Ⅲ,21Ⅱ 7Ⅰ的细胞分别占77.24%和69.42%。随着自交世代的延续,21Ⅱ 7Ⅰ细胞的传递能力逐渐降低。利用H8911作供体,选育出小麦-华山新麦草抗全蚀病新种质13个,其中1个附加系表现近高度抗病性,6个附加系、3个代换系和3个易位系材料表现中度抗病性。 相似文献
4.
利用荧光原位杂交和染色体C-分带技术对普通小麦-一华山新麦草的异代换系进行了研究。荧光原位杂交结果显示:异代换系H921—6—12和H924—3—4均含有2条华山新麦草的染色体。对这2个材料和华山新麦草进行染色体C-分带带型比较,结果认为:H921—6—12可能是普通小麦-华山新麦草的5A/N5^b代换系,H924—3—4可能是3D/N4^b代换系。 相似文献
5.
小麦—中间偃麦草异附加系条锈病抗性的研究 总被引:10,自引:2,他引:8
应用缺体回交法,以阿勃缺体为母本,中4为父本,培育出小偃麦二体异附加系7个,其中St3,St5,St7对目前流行条锈病小种表现免疫,二体异附加系与阿勃杂交及其相互杂交的F1PMCM1结果表明,所有附加系分别附加了一对中4的外源染色体,其中St5和St7附加的染色体相同,但不同于St3所附加的外源色体,这表明中4的中间偃麦草St染色体组中至少有两条染色体携带有抗条锈病基因。 相似文献
6.
小麦-华山新麦草抗全蚀病新种质的分子细胞遗传学研究 总被引:4,自引:0,他引:4
对小麦-华山新麦草附加系H20和代换系H1的抗病性及分子细胞遗传学进行了研究。结果 表明,H20和H1的体细胞染色体数目范围分别为42~44和40~42,2n=44和2n=42的细胞频率分别为58.33%和90%;花粉母细胞减数分裂中期Ⅰ,染色体构型分别为21.55Ⅱ十0.90Ⅰ和20.74Ⅱ十0.52Ⅰ,22Ⅱ和21Ⅱ的细胞频率分别为61.56%和86.18%;与中国春测交,21Ⅱ十1Ⅰ和20Ⅱ十2Ⅰ的细胞频率分别为70.14%和88.59%。用华山新麦草基因组DNA作探针进行原位杂交,结果显示H20和H1中均有2条华山新麦草染色体,他们的染色体构成分别为2n=44=42W 2N和2n=42=40W 2N。对全蚀病菌,H20表现近高度抗病性,H1表现中度抗病性。 相似文献
7.
小麦-中间偃麦草双体异附加系的鉴定 总被引:11,自引:1,他引:11
利用形态学、细胞学、A-PADE和RAPD方法,对5个小麦-中间偃麦草(Thinopyrum intermedium)双体异附加系Line 1、Line 4、Line 10、Line 14和Line 15进行了鉴定。细胞学鉴定结果表明,它们根尖细胞染色体数目为2n=44,花粉母细胞减数分裂中期Ⅰ(PMCMⅠ)染色体构型为2n=22 Ⅱ,具有高度的细胞学稳定性;形态学鉴定和A-PADE电泳分析证明,Line 1和Line 15可能附加了中间偃麦草第7部分同源群的染色体,Line 10和Line 14可能附加了中间偃麦草第1部分同源群的染色体,Line4则可能同时存在多种染色体变异;RAPD分析表明,在供试的100个随机引物中,有5个引物S21、S29、S57、S121和S152能够在亲本中间偃麦草和双体异附加系中稳定扩增出特异带型,并可作为异附加系所附加染色体的特异RAPD标记。 相似文献
8.
普通小麦和新麦草属间杂种的产生及细胞遗传学研究 总被引:17,自引:0,他引:17
进行了普通小麦和华山新麦草属间杂交,运用杂种幼胚培养技术,首次成功地获得了它们的属间杂种。F_1形态趋于中间型,均完全不育。F_1花粉母细胞预期类型(2n=28)的减数分裂中期Ⅰ平均染色体配对构型为26.72Ⅰ+0.62Ⅱ+0.01Ⅲ,后期Ⅰ和后期Ⅱ有落后染色体,多分体具大量微核。结果表明普通小麦和华山新麦草的染色体组间不存在同源或部分同源性。还观察到花粉母细胞异常减数分裂现象。用普通小麦回交,未获得回交后代。 相似文献
9.
10.
抗白粉病小麦——中间偃麦草异附加系的细胞学和RAPD鉴定 总被引:16,自引:5,他引:16
利用细胞学和RAPD技术,对从小麦与中间偃麦草杂种后代中选育的抗白粉病异附加系DAL66进行了鉴定。结果证明DAL66根尖细胞染色体数为44,花粉母细胞减数第一分裂中期(PMC MI)杂色体模型为2n=22Ⅱ。对DAL66及其双亲进行RAPD分析,从40个随机引物中筛选出1个特异引物(OPE-02)能够稳定地扩增出特异带型。 相似文献
11.
普通小麦-百萨偃麦草(Thinopyrum bessarabicum)二体异附加系的选育与鉴定 总被引:10,自引:0,他引:10
为转移与利用百萨偃麦草耐盐、抗病等优良基因,用普通小麦中国春-百萨偃麦草双倍体与中国春杂交,通过染色体C-分带、分子原位杂交并结合减数分裂中期I的染色体配对分析,从回交后代中选育出一套小麦-百萨偃麦草二体异附加系。对这套异附加系进行的鉴定与分析表明,各附加系除添加了一对百萨偃麦草染色体外,小麦的21对染色体未见明显变化。各附加系所添加的百萨偃麦草染色体在减数分裂中期I配对基本正常,仅有少量单价体,其自交后代中外源染色体亦能正常传递。这说明所培育的这套二体异附加系在细胞学上已相对稳定,暂分别编号为DAJ1、DAJ2、DAJ3、DAJ4、DAJ5、DAJ6和DAJ7。各异附加系中百萨偃麦草染色体在小麦族中的部分同源群归属和百萨偃麦草耐盐抗病基因在染色体上的定位研究正在进行之中。 相似文献
12.
小麦-中间偃麦草双体异附加系的选育和鉴定 总被引:1,自引:0,他引:1
在小麦-中间偃麦草59个杂交后代种质系中,筛选出6个小麦-中间偃麦草双体异附加系(line0605,line0607,line0609,line0610,line0611,line0625),并对其进行了形态学、白粉病抗性、细胞学和RAPD鉴定。形态学结果表明:6个双体异附加系农艺性状较好地结合了双亲的优良特点;细胞学结果表明:6个双体异附加系具有高度的细胞学稳定性,花粉母细胞减数分裂中期Ⅰ(PMCMI)的染色体构型为2n=22Ⅱ;RAPD分析表明:在供试的209个随机引物中有5个引物分别能在6个异附加系中稳定地扩增出不同的特异带型,可以作为各个异附加系所附加染色体的特异分子标记;白粉病抗性鉴定结果表明:line0605表现免疫,line0610和line0625表现高抗,line0607表现中抗,line0609和line0611表现中感。 相似文献
13.
普通小麦与东方旱麦草异附加系和异代换系的选育与原位杂交检测 总被引:10,自引:0,他引:10
旱麦草属(Eremopyrum)是用于小麦品种改良的又-潜在的植物资源。为了筛选小麦-旱麦草异附加系、异代换系,对普通小麦品种 Fukoho×东方旱麦草属间杂种的 BC2F3代材料的96粒种子进行了染色体数目的检测,共检出15粒2n=43的种子, 8粒 2n= 44的种子,进一步对以上材料进行的基因组DNA原位杂交,共鉴定出3个单体附加系,2个二体附加系,1个双单体附加,1个小麦三体单体附加,1个附加3条东方旱麦草染色体的小麦单体,在染色体数为42的个体中,检测出1个单体代换,1个双单体代换。根据BC2F3代自交品系来源的不同,初步认为由双单体附加自交比单体附加自交选择异附加系的效率高。 相似文献
14.
普通小麦与华山新麦草的杂交 总被引:23,自引:2,他引:23
华山新麦草是分布在秦岭山脉华山段的1个特有种,经细胞学鉴定为二倍体种(2n=14)。利用普通小麦与之杂交并通过幼胚培养获得了杂种,杂交结实率为0.19%,幼胚培养出苗率为33.3%。杂种表现为双亲的中间型,杂种F_1体细胞染色体数为2n=28,花粉母细胞减数分裂中期Ⅰ每细胞平均0.99个二价体,26.01个单价体。杂种花粉粒败育,以小麦花粉与杂种回交时获得了种子,回交结实率为2.5%。回交一代体细胞染色体数为2n=49,花粉母细胞减数分裂中期Ⅰ染色体构型多数为2Ⅲ 7Ⅰ。 相似文献
15.
小麦—中间偃麦草双体异附加系的选育及形态学和细胞学鉴定研究 总被引:8,自引:2,他引:8
应用在小麦品种烟农15与中间偃麦草杂交的五个世代群体中直接筛选2n=22Ⅱ植株的方法,获得11个双体异附加株,分别命名为DAL1、DAL2、……、DAL11。双体异附加株的细胞学稳定性较强,外源染色体传递频率高。形态学和细胞学鉴定结果表明:DAL1、3、5、6、8、9、10、11等8个异附加系中附加的可能是中间偃麦草第2部分同源群的染色体。 其中,DAL5、9、10、11是同一种异附加系,DAL6和DAL8为同一种异附加系,DAL3可能与之相同;DAL1与上述7个异附加系均不同。DAL2和DAL4可能分别附加了中间偃麦草第5部分同源群的1对染色体,但二者在形态上存在差异。DAL7可能附加了中间偃麦草第7部分同源群的1对染色体。旗叶卷曲是异附加系DAL、3、5、6、8、9、10、11共有的形态标记。11个异附加系可作为进一步研究和转移中间偃麦草有益基因的良好中间材料。 相似文献
16.
普通小麦—鹅观草异附加系的选育与鉴定初报 总被引:8,自引:0,他引:8
应用根尖细胞染色体计数、花粉母细胞减数分裂染色体配对构型分析、植株外形特征观察、染色体C-分带技术,在普通小麦(Triticum aestivum L.)-鹅观草(Roegneria kam ojiOhw i)的杂交及回交后代F5、BC1F3、BC1F4和BC2F4群体中选育并鉴定出3个二体异附加系V39-15-5、V35-8-8 和V58-6-11。对植株外形特征观察法和C-分带技术在普通小麦-鹅观草异附加系的选育和鉴定过程中的作用等问题进行了讨论 相似文献
17.
小麦背景中来自华山新麦草的抗条锈病基因的遗传学分析和分子标记 总被引:20,自引:0,他引:20
H9020—17—5是一个通过杂交和回交选育的普通小麦—华山新麦草易位系,接种鉴定表明其对条锈病具有优良抗性。遗传学分析证明易位系H9020—17—5的抗条锈性是由单基因控制的显性性状,抗性基因来自于华山新麦草,暂定名为YrHua。为了标记这个来自华山新麦草的抗条锈病基因,利用H9020—17—5与感病小麦品种铭贤169杂交,建立了F2分离群体。应用81对AFLP引物对119个经条锈菌生理小种CY30接种鉴定的F2单株进行了分析,结果得到两个与YrHua基因连锁的AFLP标记PM14(301)和PM42(249),遗传距离分别为5.4cM和2.7cM,并分别位于目标基因的两侧。将标记片段克隆、测序后,根据序列信息和酶切位点多态性设计特异性引物,将AFLP标记PM14(301)转换成了简单的PCR标记。研究结果为标记辅助育种提供了分子选择工具,同时也为进一步精细定位和图位克隆YrHua基因奠定了基础。 相似文献
18.
利用普通小麦(Triticum aestivum L.)7182与华山新麦草(Psathyrostachys huashanica)杂交、回交和自交,经多代选育出能够稳定遗传的大穗多花种质B46.对B46进行形态学观察及其细胞学检测与GISH鉴定.结果表明,B46形态学特征表现大穗多花特性,穗长12 cm左右,小穗达23个,小穗粒数平均6个;其根尖细胞染色体计数为2n=44;根尖原位杂交(GISH)及减数分裂中期Ⅰ染色体的基因组原位杂交(GISH)显示,B46附加1对来自于华山新麦草的同源染色体.由此可以确定B46为小麦-华山新麦草的二体异附加系,其综合农艺性状优于小麦亲本7182,可作为培育高产小麦品种的优良种质材料. 相似文献
19.
抗黄矮病普通小麦偃麦草异附加系、异代换系的选育和鉴定 总被引:2,自引:0,他引:2
以偃麦草 (Ag .pulcherrimum)为抗源 ,以圆锥小麦 (T .turgidum)×偃麦草的双二倍体———CPI113 5 0 0 ( 2n =70 )与普通小麦杂交、回交、自交得到的衍生系为基础材料 ,利用黄矮病抗性追踪、形态学标记、细胞遗传学分析 ,筛选到 2个抗黄矮病新种质 96S16 11,96W 14 9.通过测交分析、原位杂交和同工酶电泳分析等技术 ,对以上材料进行鉴定 ,结果表明 :96S16 11为普通小麦 偃麦草二体异附加系 ,96W 14 9为普通小麦 偃麦草 1D( 1Ap)二体异代换系 . 相似文献
20.
抗条锈病小麦—中间偃麦草异附加系的生化与分子标记 总被引:10,自引:2,他引:10
对小麦-中间偃麦草部分双二倍体无芒中4、异附加系C076、宛7107和中国春进行了肽链内切酶(EP-1)等电聚焦电泳。结果表明,肽链内切酶在阳极处有一特异带。肽链内切酶已定位于小麦第7部分同源群,故附加的染色体为第7部分同源群的2条染色体,对中间偃麦草,无芒中4、C076和宛7107进行了RAPD分析。获得了可用于检测C076中外源染色体的3个RAPD标记,即OPI05-800、OPI10-600、OPK01-900。 相似文献