首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
* In Arabidopsis, SULTR1;1 and SULTR1;2 are two genes proposed to be involved in high-affinity sulphate uptake from the soil solution. We address here the specific issue of their functional redundancy for the uptake of sulphate and for the accumulation of its toxic analogue selenate with regard to plant growth and selenate tolerance. * Using the complete set of genotypes, including the wild-type, each one of the single sultr1;1 and sultr1;2 mutants and the resulting double sultr1;1-sultr1;2 mutant, we performed a detailed phenotypic analysis of root length, shoot biomass, sulphate uptake, sulphate and selenate accumulation and selenate tolerance. * The results all ordered the four different genotypes according to the same functional hierarchy. Wild-type and sultr1;1 mutant plants displayed similar phenotypes. By contrast, sultr1;1-sultr1;2 double-mutant plants showed the most extreme phenotype and the sultr1;2 mutant displayed intermediate performances. Additionally, the degree of selenate tolerance was directly related to the seedling selenate content according to a single sigmoid regression curve common to all the genotypes. * The SULTR1;1 and SULTR1;2 genes display unequal functional redundancy, which leaves open for SULTR1;1 the possibility of displaying an additional function besides its role in sulphate membrane transport.  相似文献   

2.
Active loading of sucrose into phloem companion cells (CCs) is an essential process in apoplastic loaders, such as Arabidopsis or tobacco (Nicotiana sp.), and is even used by symplastic loaders such as melon (Cucumis melo) under certain stress conditions. Reduction of the amount or complete removal of the transporters catalysing this transport step results in severe developmental defects. Here we present analyses of two Arabidopsis lines, suc2-4 and suc2-5, that carry a null allele of the SUC2 gene which encodes the Arabidopsis phloem loader. These lines were complemented with constructs expressing either the Arabidopsis SUC1 or the Ustilago maydis srt1 cDNA from the SUC2 promoter. Both SUC1 and Srt1 are energy-dependent sucrose/H(+) symporters and differ in specific kinetic properties from the SUC2 protein. Transgene expression was confirmed by RT-PCRs, the subcellular localization of Srt1 in planta with an Srt1-RFP fusion, and the correct CC-specific localization of the recombinant proteins by immunolocalization with anti-Srt1 and anti-SUC1 antisera. The transport capacity of Srt1 was studied in Srt1-GFP expressing Arabidopsis protoplasts. Although both proteins were found exclusively in CCs, only SUC1 complemented the developmental defects of suc2-4 and suc2-5 mutants. As SUC1 and Srt1 are well characterized, this result provides an insight into the properties that are essential for sucrose transporters to load the phloem successfully.  相似文献   

3.
The vacuolar membrane is involved in solute uptake into and release from the vacuole, which is the largest plant organelle. In addition to inorganic ions and metabolites, large quantities of protons and sugars are shuttled across this membrane. Current models suggest that the proton gradient across the membrane drives the accumulation and/or release of sugars. Recent studies have associated AtSUC4 with the vacuolar membrane. Some members of the SUC family are plasma membrane proton/sucrose symporters. In addition, the sugar transporters TMT1 and TMT2, which are localized to the vacuolar membrane, have been suggested to function in proton-driven glucose antiport. Here we used the patch-clamp technique to monitor carrier-mediated sucrose transport by AtSUC4 and AtTMTs in intact Arabidopsis thaliana mesophyll vacuoles. In the whole-vacuole configuration with wild-type material, cytosolic sucrose-induced proton currents were associated with a proton/sucrose antiport mechanism. To identify the related transporter on one hand, and to enable the recording of symporter-mediated currents on the other hand, we electrophysiologically characterized vacuolar proteins recognized by Arabidopsis mutants of partially impaired sugar compartmentation. To our surprise, the intrinsic sucrose/proton antiporter activity was greatly reduced when vacuoles were isolated from plants lacking the monosaccharide transporter AtTMT1/TMT2. Transient expression of AtSUC4 in this mutant background resulted in proton/sucrose symport activity. From these studies, we conclude that, in the natural environment within the Arabidopsis cell, AtSUC4 most likely catalyses proton-coupled sucrose export from the vacuole. However, TMT1/2 probably represents a proton-coupled antiporter capable of high-capacity loading of glucose and sucrose into the vacuole.  相似文献   

4.
5.
6.
A general amino acid permease cDNA ( AAP2 ) was isolated from Arabidopsis by complementation of a yeast mutant defective in citrulline uptake. Direct transport measurements in yeast show that the protein mediates uptake of l -[14C]-citrulline and l -[14C]-proline. Detailed analyses of the substrate specificity by competition studies demonstrate that all proteogenic amino acids are recognized by the carrier, including those that represent the major transport forms of reduced nitrogen in many species, i.e. glutamine, glutamate and asparagine. Thus, AAP2 is less selective as compared with AAP1 and transports basic amino acids such as histidine as shown by expression in a histidine transport-deficient yeast strain. The predicted polypeptide of 53 kDa is highly hydrophobic with 12 putative membrane-spanning regions and shows significant homologies to the Arabidopsis broad specificity permease AAP1, and a limited homology to bacterial branched chain amino acid transporters, but not to any other known proteins. Alterations in the charged residues as compared with AAP1 in four regions might be involved in the difference in selectivity towards basic amino acids. Both genes are highly expressed in developing pods indicating a role in supplying the developing seeds with reduced nitrogen. AAP2 is selectively expressed in the stem and might therefore play a role in xylem-to-phloem transfer of amino acids during seed filling. Furthermore in situ hybridization shows that both genes are expressed in the vascular system of cotyledons in developing seedlings.  相似文献   

7.
8.
9.
It is currently thought that most flowering plants lack the capacity to synthesize trehalose, a common disaccharide of bacteria, fungi and invertebrates that appears to play a major role in desiccation tolerance. Attempts have therefore been made to render plants more drought-resistant by the expression of microbial genes for trehalose synthesis. It is demonstrated here that Arabidopsis thaliana itself possesses genes for at least one of the enzymes required for trehalose synthesis, trehalose-6-phosphate phosphatase. The yeast tps2 mutant, which lacks this enzyme, is heat-sensitive, and Arabidopsis cDNA able to complement this effect has been screened for. Half of the yeast transformants that grew at 38.6°C were also able to produce trehalose. All of these expressed one of two Arabidopsis cDNA, either AtTPPA or AtTPPB, which are both homologous to the C-terminal part of the yeast TPS2 gene and other microbial trehalose-6-phosphate phosphatases. Yeast tps2 mutants expressing AtTPPA or AtTPPB contained trehalose-6-phosphate phosphatase activity that could be measured both in vivo and in vitro. The enzyme dephosphorylated trehalose-6-phosphate but not glucose-6-phosphate or sucrose-6-phosphate. Both genes are expressed in flowers and young developing tissue of Arabidopsis. The finding of these novel Arabidopsis genes for trehalose-6-phosphate phosphatase strongly indicates that a pathway for trehalose biosynthesis exists in plants.  相似文献   

10.

Main conclusion

Expression of eight LEA genes enhanced desiccation tolerance in yeast, including two LEA_2 genes encoding atypical, stably folded proteins. The recombinant proteins showed enzyme, but not membrane protection during drying. To screen for possible functions of late embryogenesis abundant (LEA) proteins in cellular stress tolerance, 15 candidate genes from six Arabidopsis thaliana LEA protein families were expressed in Saccharomyces cerevisiae as a genetically amenable eukaryotic model organism. Desiccation stress experiments showed that eight of the 15 LEA proteins significantly enhanced yeast survival. While none of the proteins belonging to the LEA_1, LEA_5 or AtM families provided protection to yeast cells, two of three LEA_2 proteins, all three LEA_4 proteins and three of four dehydrins were effective. However, no significantly enhanced tolerance toward freezing, salt, osmotic or oxidative stress was observed. While most LEA proteins are highly hydrophilic and intrinsically disordered, LEA_2 proteins are “atypical”, since they are more hydrophobic and possess a stable folded structure in solution. Because nothing was known about the functional properties of LEA_2 proteins, we expressed the three Arabidopsis proteins LEA1, LEA26 and LEA27 in Escherichia coli. The bacteria expressed all three proteins in inclusion bodies from which they could be purified and refolded. Correct folding was ascertained by Fourier transform Infrared (FTIR) spectroscopy. None of the proteins was able to stabilize liposomes during freezing or drying, but they were all able to protect the enzyme lactate dehydrogenase (LDH) from inactivation during freezing. Significantly, only LEA1 and LEA27, which also protected yeast cells during drying, were able to stabilize LDH during desiccation and subsequent rehydration.  相似文献   

11.
CHL1 (AtNRT1.1) is a dual-affinity nitrate transporter of Arabidopsis thaliana, in which phosphorylation at Thr 101 switches CHL1 from low to high nitrate affinity. CHL1 expressed in a Hansenula polymorpha high-affinity nitrate-transporter deficient mutant (Deltaynt1) restores nitrate uptake and growth. These events take place at nitrate concentrations as low as 500 muM, suggesting that CHL1 has a high-affinity for nitrate in yeast. Accordingly, CHL1 expressed in H. polymorpha presents a K (m) for nitrate of about 125 muM. The absence of nitrate, the CHL1 gene inducer, showed the high turnover rate of CHL1 expressed in yeast, which is counteracted by nitrate CHL1 induction. Furthermore, H. polymorpha strains expressing CHL1 become sensitive to 250 muM chlorate, as expected for CHL1 high-affinity behaviour. Given that CHL1 presented high affinity by nitrate, we study the role of CHL1 Thr101 in yeast. Strains producing CHL1Thr101Ala, unable to undergo phosphorylation, and CHL1Thr101Asp, where CHL1 phosphorylation is constitutively mimicked, were used. Yeast strains expressing CHL1Thr101Ala, CHL1Thr101Asp and CHL1 at the same rate showed that Deltaynt1CHL1Thr101Ala is strikingly unable to transport nitrate and contains a very low amount of CHL1 protein; however, Deltaynt1CHL1Thr101Asp restores nitrate uptake and growth, although no significant changes in nitrate affinity were observed. Our results show that CHL1-Thr101 is involved in regulating the levels of CHL1 expressed in yeast and suggest that the phosphorylation of this residue could be involved in targeting this nitrate transporter to the plasma membrane. The functional expression of CHL1 in H. polymorpha reveals that this yeast is a suitable tool for evaluating the real nitrate transport capacity of plant putative nitrate transporters belonging to different families and study their regulation and structure function relationship.  相似文献   

12.
The Arabidopsis sucrose transporter AtSUC2 is expressed in the companion cells of the phloem (specialized vascular tissue) and is essential for the long distance transport of carbohydrates within the plant. A variety of glucosides are known to inhibit sucrose uptake into yeast expressing AtSUC2; however, it remains unknown whether glucosides other than sucrose could serve as transported substrates. By expression of AtSUC2 in Xenopus oocytes and two-electrode voltage clamping, we have tested the ability of AtSUC2 to transport a range of physiological and synthetic glucosides. Sucrose induced inward currents with a K0.5 of 1.44 mM at pH 5 and a membrane potential of -137 mV. Of the 24 additional sugars tested, 8 glucosides induced large inward currents allowing kinetic analysis. These glucosides were maltose, arbutin (hydroquinone-beta-D-glucoside), salicin (2-(hydroxymethyl)phenyl-beta-D-glucoside), alpha-phenylglucoside, beta-phenylglucoside, alpha-paranitrophenylglucoside, beta-paranitrophenylglucoside, and paranitrophenyl-beta-thioglucoside. In addition, turanose and alpha-methylglucoside induced small but significant inward currents indicating that they were transported by At-SUC2. The results indicate that AtSUC2 is not highly selective for alpha-over beta-glucosides and may function in transporting glucosides besides sucrose into the phloem, and the results provide insight into the structural requirements for transport by AtSUC2.  相似文献   

13.
Sucrose transport is the central system for the allocation of carbon resources in vascular plants. During growth and development, plants control carbon distribution by coordinating sites of sucrose synthesis and cleavage in different plant organs and different cellular locations. Sucrose synthase, which reversibly catalyzes sucrose synthesis and cleavage, provides a direct and reversible means to regulate sucrose flux. Depending on the metabolic environment, sucrose synthase alters its cellular location to participate in cellulose, callose, and starch biosynthesis through its interactions with membranes, organelles, and cytoskeletal actin. The x-ray crystal structure of sucrose synthase isoform 1 from Arabidopsis thaliana (AtSus1) has been determined as a complex with UDP-glucose and as a complex with UDP and fructose, at 2.8- and 2.85-Å resolutions, respectively. The AtSus1 structure provides insights into sucrose catalysis and cleavage, as well as the regulation of sucrose synthase and its interactions with cellular targets.  相似文献   

14.
In several organisms D-cysteine desulfhydrase (D-CDes) activity (EC 4.1.99.4) was measured; this enzyme decomposes D-cysteine into pyruvate, H2S, and NH3. A gene encoding a putative D-CDes protein was identified in Arabidopsis thaliana (L) Heynh. based on high homology to an Escherichia coli protein called YedO that has D-CDes activity. The deduced Arabidopsis protein consists of 401 amino acids and has a molecular mass of 43.9 kDa. It contains a pyridoxal-5'-phosphate binding site. The purified recombinant mature protein had a Km for D-cysteine of 0.25 mm. Only D-cysteine but not L-cysteine was converted by D-CDes to pyruvate, H2S, and NH3. The activity was inhibited by aminooxy acetic acid and hydroxylamine, inhibitors specific for pyridoxal-5'-phosphate dependent proteins, at low micromolar concentrations. The protein did not exhibit 1-aminocyclopropane-1-carboxylate deaminase activity (EC 3.5.99.7) as homologous bacterial proteins. Western blot analysis of isolated organelles and localization studies using fusion constructs with the green fluorescent protein indicated an intracellular localization of the nuclear encoded D-CDes protein in the mitochondria. D-CDes RNA levels increased with proceeding development of Arabidopsis but decreased in senescent plants; D-CDes protein levels remained almost unchanged in the same plants whereas specific D-CDes activity was highest in senescent plants. In plants grown in a 12-h light/12-h dark rhythm D-CDes RNA levels were highest in the dark, whereas protein levels and enzyme activity were lower in the dark period than in the light indicating post-translational regulation. Plants grown under low sulfate concentration showed an accumulation of D-CDes RNA and increased protein levels, the D-CDes activity was almost unchanged. Putative in vivo functions of the Arabidopsisd-CDes protein are discussed.  相似文献   

15.
Several calcium-independent protein kinases were activated by hyperosmotic and saline stresses in Arabidopsis cell suspension. Similar activation profiles were also observed in seedlings exposed to hyperosmotic stress. One of them was identified to AtMPK6 but the others remained to be identified. They were assumed to belong to the SNF1 (sucrose nonfermenting 1)-related protein kinase 2 (SnRK2) family, which constitutes a plant-specific kinase group. The 10 Arabidopsis SnRK2 were expressed both in cells and seedlings, making the whole SnRK2 family a suitable candidate. Using a family-specific antibody raised against the 10 SnRK2, we demonstrated that these non-MAPK protein kinases activated by hyperosmolarity in cell suspension were SnRK2 proteins. Then, the molecular identification of the involved SnRK2 was investigated by transient expression assays. Nine of the 10 SnRK2 were activated by hyperosmolarity induced by mannitol, as well as NaCl, indicating an important role of the SnRK2 family in osmotic signaling. In contrast, none of the SnRK2 were activated by cold treatment, whereas abscisic acid only activated five of the nine SnRK2. The probable involvement of the different Arabidopsis SnRK2 in several abiotic transduction pathways is discussed.  相似文献   

16.
Barth I  Meyer S  Sauer N 《The Plant cell》2003,15(6):1375-1385
Higher plants possess medium-sized gene families that encode plasma membrane-localized sucrose transporters. For several plant species, it has been shown that at least one of these genes (e.g., AtSUC3 in Arabidopsis and LeSUT2 in tomato) differs from all other family members in several features, such as the length of the open reading frame, the number of introns, and the codon usage bias. For these reasons, and because two of these proteins did not rescue a yeast mutant defective in sucrose utilization, it had been speculated that this subgroup of transporters might have sensor functions. Here, we describe the detailed functional characterization and cellular localization of PmSUC3, the orthologous transporter from the Plantago major transporter family. The PmSUC3 protein is localized in the sieve elements of the Plantago phloem and mediates the energy-dependent transport of sucrose and maltose. In contrast to the situation in solanaceous plants, PmSUC3 is not colocalized with PmSUC2, the source-specific, phloem-loading sucrose transporter of Plantago. Moreover, PmSUC3 also was identified in sieve elements of sink leaves and in several nonphloem cells and tissues. Arguments for and against a potential sensor function for this type of sucrose transporter are presented, and the role of this type of transporter in the regulation of sucrose fluxes is discussed.  相似文献   

17.
The ubiquitin/26S proteasome pathway is a major route for degrading abnormal and important short-lived regulatory proteins in eukaryotes. Covalent attachment of ubiquitin, which triggers entry of target proteins into the pathway, is accomplished by an ATP-dependent reaction cascade involving the sequential action of three enzymes, E1s, E2s and E3s. Although much of the substrate specificity of the pathway is determined by E3s (or ubiquitin-protein ligases, UPLs), little is known about these enzymes in plants and how they choose appropriate targets for ubiquitination. Here, we describe two 405 kDa E3s (UPL1 and 2) from Arabidopsis thaliana related to the HECT-E3 family that is essential in yeast and animals. UPL1 and 2 are encoded by 13 kbp genes 26 cM apart on chromosome I, that are over 95% identical within both the introns and exons, suggesting that the two loci arose from a recent gene duplication. The C-terminal HECT domain of UPL1 is necessary and sufficient to conjugate ubiquitin in vitro in a reaction that requires the positionally conserved cysteine within the HECT domain, E1, and an E2 of the UBC8 family. Given that HECT E3s help define target specificity of the ubiquitin conjugation, a continued characterization of UPL1 and 2 should be instrumental in understanding the functions of ubiquitin-dependent protein turnover in plants and for identifying pathway substrates.  相似文献   

18.
A plant antifungal protein was purified from Arabidopsis thaliana leaves by using a typical procedure consisting of anion exchange chromatography and high-performance liquid chromatography. We determined the amino acid sequence of the purified protein using MALDI-TOF/MS analysis, and found that the sequence matched that of a hypothetical Arabidopsis protein in GenBank (accession number NP_175547). We designated the protein as AtDabb1. After the cDNA encoding the AtDabb1 gene was cloned from an Arabidopsis leaf cDNA library, the recombinant protein was expressed in Escherichia coli and found to significantly inhibit cell growth of various pathogenic fungal strains. mRNA expression of the AtDabb1 gene was induced by pathogen-related signaling molecules including salicylic acid and jasmonic acid. These results suggest that AtDabb1 may contribute to the induced plant defense mechanism against diverse pathogenic fungi.  相似文献   

19.
Arabidopsis thaliana grows efficiently on GABA as the sole nitrogen source, thereby providing evidence for the existence of GABA transporters in plants. Heterologous complementation of a GABA uptake-deficient yeast mutant identified two previously known plant amino acid transporters, AAP3 and ProT2, as GABA transporters with Michaelis constants of 12.9 +/- 1.7 and 1.7 +/- 0.3 mM at pH 4, respectively. The simultaneous transport of [1-14C]GABA and [2,3-3H]proline by ProT2 as a function of pH, provided evidence that the zwitterionic state of GABA is an important parameter in substrate recognition. ProT2-mediated [1-14C]GABA transport was inhibited by proline and quaternary ammonium compounds.  相似文献   

20.
The Arabidopsis thaliana THI1 protein is involved in thiamine biosynthesis and is targeted to both chloroplasts and mitochondria by N-terminal control regions. To investigate thi1 expression, a series of thi1 promoter deletions were fused to the beta-glucuronidase (GUS) reporter gene. Transgenic plants were generated and expression patterns obtained under different environmental conditions. The results show that expression derived from the thi1 promoter is detected early on during development and continues throughout the plant's life cycle. High levels of GUS expression are observed in both shoots and roots during vegetative growth although, in roots, expression is restricted to the vascular system. Deletion analysis of the thi1 promoter region identified a region that is responsive to light. The smallest fragment (designated Pthi322) encompasses 306 bp and possesses all the essential signals for tissue specificity, as well as responsiveness to stress conditions such as sugar deprivation, high salinity, and hypoxia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号