首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The capacity of platelets to form a thrombus is mediated by integrin αIIbβ3. The cytoplasmic tail of αIIb contains a highly conserved motif, 989KVGFFKR995, which plays a critical role in regulating integrin activation and acts as a recognition site for various intracellular proteins, e.g. CIB1, PP1, ICln and RN181. Previously, we demonstrated that a cell-permeable integrin-derived activating (IDA) peptide, KVGFFKR, induces platelet activation, whereas an integrin-derived inhibitory (IDI) peptide, KVGAAKR, is antithrombotic. To elucidate the molecular mechanism underlying these opposite effects we investigate the affinity of known integrin αIIb binding proteins for the two immobilized peptides in dependence on the activation state of platelets by means of peptide-affinity chromatography, blotting techniques and protein:peptide docking studies.Our results provide a model for the inhibition of ICln interaction with the integrin in activated platelets by the IDI-peptide. Thus, ICln:IDI-peptide interaction profiles can have a pivotal purpose in the search for consensus pharmacophores specifically inhibiting ICln function in platelets potentially leading to the development of integrin-derived antithrombotic drugs.  相似文献   

2.
Modification of the cytoplasmic tails of the integrin alpha(IIb)beta(3) plays an important role in the signal transduction in platelets. We searched for proteins that bind to the alpha(IIb) cytoplasmic tail using the yeast two-hybrid assay with a cDNA library of the megakaryocyte-derived cell line and identified a protein, ancient ubiquitous protein 1 (Aup1), that is ubiquitously expressed in human cells. Observation of UT7/TPO cells expressing a red fluorescent protein-tagged Aup1 indicated its localization in the cytoplasm. Immunoprecipitation of UT7/TPO cells by an antibody for Aup1 revealed that approximately 40% of alpha(IIb) is complexed with Aup1. Binding study with an alpha(IIb) cytoplasmic tail peptide and glutathione S-transferase-Aup1 fusion protein revealed a low affinity (K(d) = 90 microm). Subsequent yeast two-hybrid assay indicated binding of Aup1 to cytoplasmic tails of other integrin alpha subunits. Binding study with the purified Aup1 and various glutathione S-transferase-alpha(IIb) cytoplasmic tail peptides revealed specific binding of Aup1 to the membrane-proximal sequence (KVGFFKR) that is conserved among the integrin alpha subunits and plays a crucial role in the alpha(IIb)beta(3) inside-out signaling. As Aup1 possesses domains related to signal transduction, these results suggest involvement of Aup1 in the integrin signaling.  相似文献   

3.
alpha(IIb)beta(3), a platelet-specific integrin, plays a critical role in platelet aggregation. The affinity of alpha(IIb)beta(3) for its ligands such as fibrinogen and von Willebrand factor is tightly regulated in an uncharacterized intracellular process termed inside-out signaling. Calcium integrin-binding protein (CIB) has been identified as a protein interacting with the cytoplasmic tail of the alpha(IIb) subunit of alpha(IIb)beta(3), but its physiological role has not been defined. In the present study, I demonstrate that CIB activates alpha(IIb)beta(3) both in vitro and in vivo. CIB interacts directly with the alpha(IIb) cytoplasmic tail, thereby increasing the affinity of alpha(IIb)beta(3) for fibrinogen in an in vitro fibrinogen-binding assay. The interaction of CIB with the alpha(IIb) cytoplasmic tail is enhanced in a Ca(2+)-dependent manner. A physiological agonist, ADP, stimulates platelets, activating alpha(IIb)beta(3). When the interaction of CIB with the alpha(IIb) cytoplasmic tail is blocked in native platelets by a permeable competing peptide, alpha(IIb)beta(3) activation is not detected even in the presence of ADP. This result indicates that direct interaction of CIB with the alpha(IIb) cytoplasmic tail converts alpha(IIb)beta(3) from a resting to an active conformation. This suggests that CIB plays an important role in one of the pathways that modulate the affinity of alpha(IIb)beta(3) for its ligand.  相似文献   

4.
To understand the regulation of integrin alpha(IIb)beta(3), a critical platelet adhesion molecule, we have developed a peptide affinity chromatography method using the known integrin regulatory motif, LAMWKVGFFKR. Using standard Fmoc chemistry, this peptide was synthesized onto a Toyopearl AF-Amino-650 M resin on a 6-aminohexanoic acid (Ahx) linker. Peptide density was controlled by acetylation of 83% of the Ahx amino groups. Four recombinant human proteins (CIB1, PP1, ICln and RN181), previously identified as binding to this integrin regulatory motif, were specifically retained by the column containing the integrin peptide but not by a column presenting an irrelevant peptide. Hemoglobin, creatine kinase, bovine serum albumin, fibrinogen and alpha-tubulin failed to bind under the chosen conditions. Immunodetection methods confirmed the binding of endogenous platelet proteins, including CIB1, PP1, ICln RN181, AUP-1 and beta3-integrin, from a detergent-free platelet lysate. Thus, we describe a reproducible method that facilitates the reliable extraction of specific integrin-binding proteins from complex biological matrices. This methodology may enable the sensitive and specific identification of proteins that interact with linear, membrane-proximal peptide motifs such as the integrin regulatory motif LAMWKVGFFKR.  相似文献   

5.
Ligands "activate" integrin alpha IIb beta 3 (platelet GPIIb-IIIa)   总被引:29,自引:0,他引:29  
Integrin alpha IIb beta 3 (platelet GPIIb-IIIa) binds fibrinogen via recognition sequences such as Arg-Gly-Asp (RGD). Fibrinogen binding requires agonist activation of platelets, whereas the binding of short synthetic RGD peptides does not. We now find that RGD peptide binding leads to changes in alpha IIb beta 3 that are associated with acquisition of high affinity fibrinogen-binding function (activation) and subsequent platelet aggregation. The structural specificities for peptide activation and for inhibition of ligand binding are similar, indicating that both are consequences of occupancy of the same site(s) on alpha IIb beta 3. Thus, the RGD sequence is a trigger of high affinity ligand binding to alpha IIb beta 3, and certain RGD-mimetics are partial agonists as well as competitive antagonists of integrin function.  相似文献   

6.
Integrin alpha(IIb)beta(3) activation is critical for platelet physiology and is controlled by signal transduction through kinases and phosphatases. Compared with kinases, a role for phosphatases in platelet integrin alpha(IIb)beta(3) signaling is less understood. We report that the catalytic subunit of protein phosphatase 2A (PP2Ac) associates constitutively with the integrin alpha(IIb)beta(3) in resting platelets and in human embryonal kidney 293 cells expressing alpha(IIb)beta(3). The membrane proximal KVGFFKR sequence within the cytoplasmic domain of integrin alpha(IIb) is sufficient to support a direct interaction with PP2Ac. Fibrinogen binding to alpha(IIb)beta(3) during platelet adhesion decreased integrin-associated PP2A activity and increased the phosphorylation of a PP2A substrate, vasodilator associated phosphoprotein. Overexpression of PP2Ac(alpha) in 293 cells decreased alpha(IIb)beta(3)-mediated adhesion to immobilized fibrinogen. Conversely, small interference RNA mediated knockdown of endogenous PP2Ac(alpha) expression in 293 cells, enhanced extracellular signal-regulated kinase (ERK1/2) and p38 activation, and accelerated alpha(IIb)beta(3) adhesion to fibrinogen and von Willebrand factor. Inhibition of ERK1/2, but not p38 activation, abolished the increased adhesiveness of PP2Ac (alpha)-depleted 293 cells to fibrinogen. Furthermore, knockdown of PP2A(calpha) expression in bone marrow-derived murine megakaryocytes increased soluble fibrinogen binding induced by protease-activated receptor 4-activating peptide. These studies demonstrate that PP2Ac (alpha) can negatively regulate integrin alpha(IIb)beta(3) signaling by suppressing the ERK1/2 signaling pathway.  相似文献   

7.
ICAM-4 (LW blood group glycoprotein) is an erythroid-specific membrane component that belongs to the family of intercellular adhesion molecules and interacts in vitro with different members of the integrin family, suggesting a potential role in adhesion or cell interaction events, including hemostasis and thrombosis. To evaluate the capacity of ICAM-4 to interact with platelets, we have immobilized red blood cells (RBCs), platelets, and ICAM-Fc fusion proteins to a plastic surface and analyzed their interaction in cell adhesion assays with RBCs and platelets from normal individuals and patients, as well as with cell transfectants expressing the alpha(IIb)beta(3) integrin. The platelet fibrinogen receptor alpha(IIb)beta(3) (platelet GPIIb-IIIa) in a high affinity state following GRGDSP peptide activation was identified for the first time as the receptor for RBC ICAM-4. The specificity of the interaction was demonstrated by showing that: (i) activated platelets adhered less efficiently to immobilized ICAM-4-negative than to ICAM-4-positive RBCs, (ii) monoclonal antibodies specific for the beta(3)-chain alone and for a complex-specific epitope of the alpha(IIb)beta(3) integrin, and specific for ICAM-4 to a lesser extent, inhibited platelet adhesion, whereas monoclonal antibodies to GPIb, CD36, and CD47 did not, (iii) activated platelets from two unrelated type-I glanzmann's thrombasthenia patients did not bind to coated ICAM-4. Further support to RBC-platelet interaction was provided by showing that dithiothreitol-activated alpha(IIb)beta(3)-Chinese hamster ovary transfectants strongly adhere to coated ICAM-4-Fc protein but not to ICAM-1-Fc and was inhibitable by specific antibodies. Deletion of individual Ig domains of ICAM-4 and inhibition by synthetic peptides showed that the alpha(IIb)beta(3) integrin binding site encompassed the first and second Ig domains and that the G65-V74 sequence of domain D1 might play a role in this interaction. Although normal RBCs are considered passively entrapped in fibrin polymers during thrombus, these studies identify ICAM-4 as the first RBC protein ligand of platelets that may have relevant physiological significance.  相似文献   

8.
This study investigates three aspects of the adhesive interaction operating between platelet glycoprotein Ib/IX and integrin alpha(IIb)beta(3). These include the following: 1) examining the sufficiency of GPIb/IX and integrin alpha(IIb)beta(3) to mediate irreversible cell adhesion on immobilized von Willebrand factor (vWf) under flow; 2) the ability of the vWf-GPIb interaction to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli; and 3) the identification of key second messengers linking the vWf-GPIb/IX interaction to integrin alpha(IIb)beta(3) activation. By using Chinese hamster ovary cells transfected with GPIb/IX and integrin alpha(IIb)beta(3), we demonstrate that these receptors are both necessary and sufficient to mediate irreversible cell adhesion under flow, wherein GPIb/IX mediates cell tethering and rolling on immobilized vWf, and integrin alpha(IIb)beta(3) mediates cell arrest. Moreover, we demonstrate direct signaling between GPIb/IX and integrin alpha(IIb)beta(3). Studies on human platelets demonstrated that vWf binding to GPIb/IX is able to induce integrin alpha(IIb)beta(3) activation independent of endogenous platelet stimuli under both static and physiological flow conditions (150-1800 s(-)(1)). Analysis of the key second messengers linking the vWf-GPIb interaction to integrin alpha(IIb)beta(3) activation demonstrated that the first step in the activation process involves calcium release from internal stores, whereas transmembrane calcium influx is a secondary event potentiating integrin alpha(IIb)beta(3) activation.  相似文献   

9.
Hemostasis and thrombosis (blood clotting) involve fibrinogen binding to integrin alpha(IIb)beta(3) on platelets, resulting in platelet aggregation. alpha(v)beta(3) binds fibrinogen via an Arg-Asp-Gly (RGD) motif in fibrinogen's alpha subunit. alpha(IIb)beta(3) also binds to fibrinogen; however, it does so via an unstructured RGD-lacking C-terminal region of the gamma subunit (gammaC peptide). These distinct modes of fibrinogen binding enable alpha(IIb)beta(3) and alpha(v)beta(3) to function cooperatively in hemostasis. In this study, crystal structures reveal the integrin alpha(IIb)beta(3)-gammaC peptide interface, and, for comparison, integrin alpha(IIb)beta(3) bound to a lamprey gammaC primordial RGD motif. Compared with RGD, the GAKQAGDV motif in gammaC adopts a different backbone configuration and binds over a more extended region. The integrin metal ion-dependent adhesion site (MIDAS) Mg(2+) ion binds the gammaC Asp side chain. The adjacent to MIDAS (ADMIDAS) Ca(2+) ion binds the gammaC C terminus, revealing a contribution for ADMIDAS in ligand binding. Structural data from this natively disordered gammaC peptide enhances our understanding of the involvement of gammaC peptide and integrin alpha(IIb)beta(3) in hemostasis and thrombosis.  相似文献   

10.
After vessel injury, platelets adhere to the subendothelial matrix. Platelet adhesion leads to activation of the platelet integrin alpha(IIb)beta3, which then binds to fibrinogen, leading to platelet aggregation. It has been shown that a beta3-integrin binding protein, beta3-endonexin, can activate the integrin alpha(IIb)beta3 expressed in transfected CHO cells. Several isoforms of beta3-endonexin are known but it is not clear which isoforms are expressed in platelets and what role they may play during haemostasis. Here, we show that the long form of beta3-endonexin (EN-L) can be detected in platelet lysates several hours after thrombus formation, after long-term storage of platelets and after glucose deprivation. After subcellular fractionation, EN-L is found in the detergent insoluble fraction suggesting that it might be associated with the cytoskeleton. EN-L generation is temperature and Ca++ dependent and requires physiological salt concentrations. Proteolysis is responsible for the appearance of EN-L since a calpain inhibitor prevents its formation and the addition of calpain to platelet lysates induces its formation. The appearance of EN-L seems to be linked to apoptotic events occurring during long-term storage of platelets and, possibly, during late steps of haemostasis after thrombus formation.  相似文献   

11.
We previously identified proteins that bind with high affinity to a peptide corresponding to the cytoplasmic regulatory domain (KVGFFKR) of the platelet-specific integrin subunit αIIb. These included a hypothetical protein termed HSPC238, recently renamed as RING finger protein, RN181. Here, we establish the presence of RN181 in human platelets by RT-PCR, Western blotting and mass spectrometry and confirm its affinity for the platelet integrin. We demonstrate that RN181 has ubiquitin E3 ligase activity and that all other components of the ubiquitination pathway are abundant in platelets, suggesting a novel link of integrin signal transduction pathways with ubiquitin-conjugation events.  相似文献   

12.
Studies with inhibitors have implicated protein kinase C (PKC) in the adhesive functions of integrin alpha(IIb)beta(3) in platelets, but the responsible PKC isoforms and mechanisms are unknown. Alpha(IIb)beta(3) interacts directly with tyrosine kinases c-Src and Syk. Therefore, we asked whether alpha(IIb)beta(3) might also interact with PKC. Of the several PKC isoforms expressed in platelets, only PKC beta co-immunoprecipitated with alpha(IIb)beta(3) in response to the interaction of platelets with soluble or immobilized fibrinogen. PKC beta recruitment to alpha(IIb)beta(3) was accompanied by a 9-fold increase in PKC activity in alpha(IIb)beta(3) immunoprecipitates. RACK1, an intracellular adapter for activated PKC beta, also co-immunoprecipitated with alpha(IIb)beta(3), but in this case, the interaction was constitutive. Broad spectrum PKC inhibitors blocked both PKC beta recruitment to alpha(IIb)beta(3) and the spread of platelets on fibrinogen. Similarly, mouse platelets that are genetically deficient in PKC beta spread poorly on fibrinogen, despite normal agonist-induced fibrinogen binding. In a Chinese hamster ovary cell model system, adhesion to fibrinogen caused green fluorescent protein-PKC beta I to associate with alpha(IIb)beta(3) and to co-localize with it at lamellipodial edges. These responses, as well as Chinese hamster ovary cell migration on fibrinogen, were blocked by the deletion of the beta(3) cytoplasmic tail or by co-expression of a RACK1 mutant incapable of binding to beta(3). These studies demonstrate that the interaction of alpha(IIb)beta(3) with activated PKC beta is regulated by integrin occupancy and can be mediated by RACK1 and that the interaction is required for platelet spreading triggered through alpha(IIb)beta(3). Furthermore, the studies extend the concept of alpha(IIb)beta(3) as a scaffold for multiple protein kinases that regulate the platelet actin cytoskeleton.  相似文献   

13.
Savignygrin, a platelet aggregation inhibitor that possesses the RGD integrin recognition motif, has been purified from the soft tick Ornithodoros savignyi. Two isoforms with similar biological activities differ because of R52G and N60G in their amino acid sequences, indicating a recent gene duplication event. Platelet aggregation induced by ADP (IC50, 130 nm), collagen, the thrombin receptor-activating peptide, and epinephrine was inhibited, although platelets were activated and underwent a shape change. The binding of alpha-CD41 (P2) to platelets, the binding of purified alpha(IIb)beta3 to fibrinogen, and the adhesion of platelets to fibrinogen was inhibited, indicating a targeting of the fibrinogen receptor. In contrast, the adhesion of osteosarcoma cells that express the integrin alpha(v)beta3 to vitronectin or fibrinogen was not inhibited, indicating the specificity of savignygrin toward alpha(IIb)beta3. Savignygrin shows sequence identity to disagregin, a platelet aggregation inhibitor from the tick Ornithodoros moubata that lacks an RGD motif. The cysteine arrangement of savignygrin is similar to that of the bovine pancreatic trypsin inhibitor family of serine protease inhibitors. A homology model based on the structure of the tick anticoagulant peptide indicates that the RGD motif is presented on the substrate-binding loop of the canonical BPTI inhibitors. However, savignygrin did not inhibit the serine proteases fXa, plasmin, thrombin, or trypsin. This is the first report of a platelet aggregation inhibitor that presents the RGD motif using the Kunitz-BPTI protein fold.  相似文献   

14.
Platelet activation by collagen depends principally on two receptors, alpha(2)beta(1) integrin (GPIa-IIa) and GPVI. During this activation, the nonreceptor protein tyrosine kinase pp72(syk) is rapidly phosphorylated, but the precise contribution of alpha(2)beta(1) integrin and GPVI to signaling for this phosphorylation is not clear. We have recently found that proteolysis of platelet alpha(2)beta(1) integrin by the snake venom metalloproteinase, jararhagin, results in inhibition of collagen-induced platelet aggregation and pp72(syk) phosphorylation. In order to verify whether the treatment of platelets with jararhagin had any effect on GPVI signaling, in this study we stimulated platelets treated with either jararhagin or anti-alpha(2)beta(1) antibody with two GPVI agonists, an antibody to GPVI and convulxin. Platelet shape change and phosphorylation of pp72(syk) by both GPVI agonists was preserved, as was the structure and function of GPVI shown by (125)I-labeled convulxin binding to immunoprecipitated GPVI from jararhagin-treated platelets. In contrast, defective platelet aggregation in response to GPVI agonists occurred in both jararhagin-treated and alpha(2)beta(1)-blocked platelets. This apparent cosignaling role of alpha(2)beta(1) integrin for platelet aggregation suggests the possibility of a topographical association of this integrin with GPVI. We found that both platelet alpha(2)beta(1) integrin and GPVI coimmunoprecipitated with alpha(IIb)beta(3) integrin. Since platelet aggregation requires activation of alpha(IIb)beta(3) integrin, defective aggregation in the absence of alpha(2)beta(1) suggests that this receptor may provide a signaling link between GPVI and alpha(IIb)beta(3). Our study therefore demonstrates that platelet signaling leading to pp72(syk) phosphorylation initiated with GPVI engagement by either convulxin or GPVI antibody does not depend on alpha(2)beta(1) integrin. However, alpha(IIb)beta(3) integrin may, in this model, require functional alpha(2)beta(1) integrin for its activation.  相似文献   

15.
Following platelet aggregation, integrin alpha(IIb)beta(3) becomes associated with the platelet cytoskeleton. The conserved NPLY sequence represents a potential beta-turn motif in the beta(3) cytoplasmic tail and has been suggested to mediate the interaction of beta(3) integrins with talin. In the present study, we performed a double mutation (N744Q/P745A) in the integrin beta(3) subunit to test the functional significance of this beta-turn motif. Chinese hamster ovary cells were co-transfected with cDNA constructs encoding mutant beta(3) and wild type alpha(IIb). Cells expressing either wild type (A5) or mutant (D4) alpha(IIb)beta(3) adhered to fibrinogen; however, as opposed to control A5 cells, adherent D4 cells failed to spread, form focal adhesions, or initiate protein tyrosine phosphorylation. To investigate the role of the NPLY motif in talin binding, we examined the ability of the mutant alpha(IIb)beta(3) to interact with talin in a solid phase binding assay. Both wild type and mutant alpha(IIb)beta(3), purified by RGD affinity chromatography, bound to a similar extent to immobilized talin. Additionally, purified talin failed to interact with peptides containing the AKWDTANNPLYK sequence indicating that the talin binding domain in the integrin beta(3) subunit does not reside in the NPLY motif. In contrast, specific binding of talin to peptides containing the membrane-proximal HDRKEFAKFEEERARAK sequence of the beta(3) cytoplasmic tail was observed, and this interaction was blocked by a recombinant protein fragment corresponding to the 47-kDa N-terminal head domain of talin (rTalin-N). In addition, RGD affinity purified platelet alpha(IIb)beta(3) bound dose-dependently to immobilized rTalin-N, indicating that an integrin-binding site is present in the talin N-terminal head domain. Collectively, these studies demonstrate that the NPLY beta-turn motif regulates post-ligand binding functions of alpha(IIb)beta(3) in a manner independent of talin interaction. Moreover, talin was shown to bind through its N-terminal head domain to the membrane-proximal sequence of the beta(3) cytoplasmic tail.  相似文献   

16.
The small GTPase RhoA modulates the adhesive nature of many cell types; however, despite high levels of expression in platelets, there is currently limited evidence for an important role for this small GTPase in regulating platelet adhesion processes. In this study, we have examined the role of RhoA in regulating the adhesive function of the major platelet integrin, alpha(IIb)beta(3). Our studies demonstrate that activation of RhoA occurs as a general feature of platelet activation in response to soluble agonists (thrombin, ADP, collagen), immobilized matrices (von Willebrand factor (vWf), fibrinogen) and high shear stress. Blocking the ligand binding function of integrin alpha(IIb)beta(3), by pretreating platelets with c7E3 Fab, demonstrated the existence of integrin alpha(IIb)beta(3)-dependent and -independent mechanisms regulating RhoA activation. Inhibition of RhoA (C3 exoenzyme) or its downstream effector Rho kinase had no effect on integrin alpha(IIb)beta(3) activation induced by soluble agonists or adhesive substrates, however, both inhibitors reduced shear-dependent platelet adhesion on immobilized vWf and shear-induced platelet aggregation in suspension. Detailed analysis of the sequential adhesive steps required for stable platelet adhesion on a vWf matrix under shear conditions revealed that RhoA did not regulate platelet tethering to vWf or the initial formation of integrin alpha(IIb)beta(3) adhesion contacts but played a major role in sustaining stable platelet-matrix interactions. These studies define a critical role for RhoA in regulating the stability of integrin alpha(IIb)beta(3) adhesion contacts under conditions of high shear stress.  相似文献   

17.
Evidence was obtained about the mechanism responsible for platelet integrin alpha(2)beta activation by determining effects of various inhibitors on soluble collagen binding, a parameter to assess integrin alpha(2)beta(1) activation, in stimulated platelets. Agonists that can also activate platelet glycoprotein IIb/IIIa are able to activate integrin alpha(2)beta(1), but those operating via glycoprotein Ib cannot. Activation of alpha(2)beta(1) induced by low thrombin or collagen-related peptide concentrations was almost completely inhibited by apyrase, and the inhibitors wortmannin, 4-amino-5-(chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, bisindolylmaleimide I, and SQ29548 significantly inhibited it. Activation induced by high thrombin or collagen-related peptide concentrations was far less sensitive to these inhibitors. However, only wortmannin markedly inhibited ADP-induced integrin alpha(2)beta(1) activation, and this was not ADP concentration-dependent. These results suggest that at the low agonist concentrations, the released ADP would be a primary inducer of integrin alpha(2)beta(1) activation, while at the high agonist concentrations, there would be several pathways through which integrin alpha(2)beta(1) activation can be induced. Kinetic analyses revealed that ADP-induced platelets had about the same number of binding sites (B(max)) as thrombin-induced platelets, but their affinity (K(d)) for soluble collagen was 3.7-12.7-fold lower, suggesting that activated integrin alpha(2)beta(1) induced by ADP is different from that induced by thrombin. The data are consistent with an activation mechanism involving released ADP and in which there exists two different states of activated integrin alpha(2)beta(1); these activated forms of integrin alpha(2)beta(1) would have different conformations that determine their ligand affinity.  相似文献   

18.
To analyze the basis of affinity modulation of integrin function, we studied cloned stable Chinese hamster ovary cell lines expressing recombinant integrins of the beta 3 family (alpha IIb beta 3 and alpha v beta 3). Antigenic and peptide recognition specificities of the recombinant receptors resembled those of the native receptors found in platelets or endothelial cells. The alpha IIb beta 3-expressing cell line (A5) bound RGD peptides and immobilized fibrinogen (Fg) but not soluble fibrinogen or the activation-specific monoclonal anti-alpha IIb beta 3 (PAC1), indicating that it was in the affinity state found on resting platelets. Several platelet agonists failed to alter the affinity state of ("activate") recombinant alpha IIb beta 3. The binding of soluble Fg and PAC1, however, was stimulated in both platelets and A5 cells by addition of IgG papain-digestion products (Fab) fragments of certain beta 3-specific monoclonal antibodies. These antibodies stimulated PAC1 binding to platelets fixed under conditions rendering them unresponsive to other agonists. Addition of these antibodies to detergent-solubilized alpha IIb beta 3 also stimulated specific Fg binding. These data demonstrate that certain anti-beta 3 antibodies activate alpha IIb beta 3 by acting directly on the receptor, possibly by altering its conformation. Furthermore, they indicate that the activation state of alpha IIb beta 3 is a property of the receptor itself rather than of the surrounding cell membrane microenvironment.  相似文献   

19.
20.
The phosphotyrosine binding-like domain of talin activates integrins   总被引:1,自引:0,他引:1  
Cellular regulation of the ligand binding affinity of integrin adhesion receptors (integrin activation) depends on the integrin beta cytoplasmic domains (tails). The head domain of talin binds to several integrin beta tails and activates integrins. This head domain contains a predicted FERM domain composed of three subdomains (F1, F2, and F3). An integrin-activating talin fragment was predicted to contain the F2 and F3 subdomains. Both isolated subdomains bound specifically to the integrin beta3 tail. However, talin F3 bound the beta3 tail with a 4-fold higher affinity than talin F2. Furthermore, expression of talin F3 (but not F2) in cells led to activation of integrin alpha(IIb)beta3. A molecular model of talin F3 indicated that it resembles a phosphotyrosine-binding (PTB) domain. PTB domains recognize peptide ligands containing beta turns, often formed by NPXY motifs. NPX(Y/F) motifs are highly conserved in integrin beta tails, and mutations that disrupt this motif interfere with both integrin activation and talin binding. Thus, integrin binding to talin resembles the interactions of PTB domains with peptide ligands. These resemblances suggest that the activation of integrins requires the presence of a beta turn at NPX(Y/F) motifs conserved in integrin beta cytoplasmic domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号