首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
It is shown that the apoproteins of core complexes (CC) I and II, the - and -subunits of CF1 ATP-synthase complexes, are present in seedlings grown under intermittent light (IML). The levels of light-harvesting complex (LHC) apoproteins in the 30- to 18-kD region increase rapidly upon exposure to continuous light (CL). The newly synthesized LHC apoproteins appear to be present predominantly in monomeric forms that later assemble into higher-order oligomeric forms. During the early stages of greening of wheat seedlings, polypeptides in the 20.5-19 and 17.5-15.5 kD regions (so-called early light-induced proteins (ELIP)) are observed, but they disappear fully after 6 h. As greening proceeds, the 727-nm band in low-temperature fluorescence spectra (77 K) gradually shifts to longer wavelength (740-742 nm), which clearly demonstrates the light-driven biogenesis of LHC I and its assembly with CC I.  相似文献   

2.
We studied fluorescent and absorption properties of the chloroplasts and pigment–protein complexes isolated by gel electrophoresis from the leaves of pea, the parent cultivar Torsdag and mutants chlorotica 2004 and 2014. Specific fluorescence peaks of chlorophyll forms in individual complexes have been determined from the absorption and fluorescence spectra of the chloroplast chlorophyll and their second derivatives at 23 and –196°C. The mutant chlorotica 2004 proved to have an increased intensity of a long-wave band of the light-harvesting complex I at both 23°C (745 nm) and –196°C (728 nm). At the same time, this mutant manifested a decreased accumulation of the chlorophyll forms making up the nearest-neighbor antenna of the PS I reaction center (at 690, 697, and 708 nm). No spectral differences have been revealed between chlorotica 2014 mutant and the parent cultivar. Gel electrophoresis revealed the synthesis of all chlorophyll–protein complexes in both mutants. At the same time, analysis of photochemical activity of PS I and PS II reaction centers and calculations of their number and the size of the light-harvesting antenna have shown that the number of reaction centers in the PS I of chlorotica 2004 mutant is reduced by a factor of 1.7 because its chlorophyll a–protein complex is disturbed by the mutation. The primary effect of chlorotica 2014 mutation remains unclear. The proportional changes in the content of photosystem complexes in this mutant suggest that they are secondary and result from a 50% decrease in chlorophyll content.  相似文献   

3.
Eukaryotic cells are known to contain a wide variety of RNA–protein assemblies, collectively referred to as RNP granules. RNP granules form from a combination of RNA–RNA, protein–RNA, and protein–protein interactions. In addition, RNP granules are enriched in proteins with intrinsically disordered regions (IDRs), which are frequently appended to a well-folded domain of the same protein. This structural organization of RNP granule components allows for a diverse set of protein–protein interactions including traditional structured interactions between well-folded domains, interactions of short linear motifs in IDRs with the surface of well-folded domains, interactions of short motifs within IDRs that weakly interact with related motifs, and weak interactions involving at most transient ordering of IDRs and folded domains with other components. In addition, both well-folded domains and IDRs in granule components frequently interact with RNA and thereby can contribute to RNP granule assembly. We discuss the contribution of these interactions to liquid–liquid phase separation and the possible role of phase separation in the assembly of RNP granules. We expect that these principles also apply to other non-membrane bound organelles and large assemblies in the cell.  相似文献   

4.
The primary stages of protochlorophyllide phototransformation in an artificially formed complex containing heterologously expressed photoenzyme protochlorophyllide-oxidoreductase (POR), protochlorophyllide, and NADPH were investigated by optical and ESR spectroscopy. An ESR signal (g = 2.002; H = 1 mT) appeared after illumination of the complex with intense white light at 77 K. The ESR signal appeared with simultaneous quenching of the initial protochlorophyllide fluorescence, this being due to the formation of a primary non-fluorescent intermediate. The ESR signal disappeared on raising the temperature to 253 K, and a new fluorescence maximum at 695 nm belonging to chlorophyllide simultaneously appeared. The data show that the mechanism of protochlorophyllide photoreduction in the complex is practically identical to the in vivo mechanism: this includes the formation of a short-lived non-fluorescent free radical that is transformed into chlorophyllide in a dark reaction.  相似文献   

5.
The cellular functions of proteins are maintained by forming diverse complexes. The stability of these complexes is quantified by the measurement of binding affinity, and mutations that alter the binding affinity can cause various diseases such as cancer and diabetes. As a result, accurate estimation of the binding stability and the effects of mutations on changes of binding affinity is a crucial step to understanding the biological functions of proteins and their dysfunctional consequences. It has been hypothesized that the stability of a protein complex is dependent not only on the residues at its binding interface by pairwise interactions but also on all other remaining residues that do not appear at the binding interface. Here, we computationally reconstruct the binding affinity by decomposing it into the contributions of interfacial residues and other non-interfacial residues in a protein complex. We further assume that the contributions of both interfacial and non-interfacial residues to the binding affinity depend on their local structural environments such as solvent-accessible surfaces and secondary structural types. The weights of all corresponding parameters are optimized by Monte-Carlo simulations. After cross-validation against a large-scale dataset, we show that the model not only shows a strong correlation between the absolute values of the experimental and calculated binding affinities, but can also be an effective approach to predict the relative changes of binding affinity from mutations. Moreover, we have found that the optimized weights of many parameters can capture the first-principle chemical and physical features of molecular recognition, therefore reversely engineering the energetics of protein complexes. These results suggest that our method can serve as a useful addition to current computational approaches for predicting binding affinity and understanding the molecular mechanism of protein–protein interactions.  相似文献   

6.
A derivative of phthalic acid, dibutylphthalate (DBP), which has gametocidal effect at the concentration of approximately 10(-4) M, increased apoptosis in coleoptiles of wheat seedlings. This was associated with activation of chromatin margination and generation of mitochondria-containing vesicles. At the same concentration, DBP activated the release by the coleoptiles of superoxide anion into the environment. Lower (10(-5) M) and higher (10(-3) M) concentrations of DBP virtually had no effect on either process. A probable mechanism of effect of the "external" superoxide anion on apoptosis within the plant cell is discussed.  相似文献   

7.
8.
Cross-saturation experiments allow the identification of the contact residues of large protein complexes (MW>50 K) more rigorously than conventional NMR approaches which involve chemical shift perturbations and hydrogen-deuterium exchange experiments [Takahashi et al. (2000) Nat. Struct. Biol., 7, 220–223]. In the amide proton-based cross-saturation experiment, the combined use of high deuteration levels for non-exchangeable protons of the ligand protein and a solvent with a low concentration of 1H2O greatly enhanced the selectivity of the intermolecular cross-saturation phenomenon. Unfortunately, experimental limitations caused losses in sensitivity. Furthermore, since main chain amide protons are not generally exposed to solvent, the efficiency of the saturation transfer directed to the main chain amide protons is not very high. Here we propose an alternative cross-saturation experiment which utilizes the methyl protons of the side chains of the ligand protein. Owing to the fast internal rotation along the methyl axis, we theoretically and experimentally demonstrated the enhanced efficiency of this approach. The methyl-utilizing cross-saturation experiment has clear advantages in sensitivity and saturation transfer efficiency over the amide proton-based approach. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
Russian Journal of Plant Physiology - Mechanisms of photosynthesis inhibition by vaporous naphthalene, its permeation into thylakoids, and interactions with chlorophyll–protein complexes were...  相似文献   

10.
γ-Aminobutyrate (GABA) was the only amino acid out of three amino acid intermediates of GABA shunt that increased significantly after 28 h from the beginning of osmotic stress induced by 20 % polyethylene glycol 6000 in wheat seedlings. At the same time specific activities of glutamate decarboxylase (GAD) and GABA aminotransferase (GABA-T) two enzymes of GABA pathway did not change as compared with the control plants. The response of two GABA-T activities (with pyruvate or 2-oxoglutarate as amino acid acceptor) to aminooxyacetate, 3-chloro-L-alanine and p-hydroxymercuribenzoate prompted us to suggest that at least two isoforms of GABA-T showing different substrate specificity do exist in wheat leaves. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
O2 sensing in diverse protozoa depends on the prolyl 4 hydroxylation of Skp1 and modification of the resulting hydroxyproline with a series of five sugars. In yeast, plants, and animals, Skp1 is associated with F-box proteins. The Skp1–F-box protein heterodimer can, for many F-box proteins, dock onto cullin-1 en route to assembly of the Skp1–cullin-1–F-box protein–Rbx1 subcomplex of E3SCFUb ligases. E3SCFUb ligases conjugate Lys48-polyubiquitin chains onto targets bound to the substrate receptor domains of F-box proteins, preparing them for recognition by the 26S proteasome. In the social amoeba Dictyostelium, we found that O2 availability was rate-limiting for the hydroxylation of newly synthesized Skp1. To investigate the effect of reduced hydroxylation, we analyzed knockout mutants of the Skp1 prolyl hydroxylase and each of the Skp1 glycosyltransferases. Proteomic analysis of co-immunoprecipitates showed that wild-type cells able to fully glycosylate Skp1 had a greater abundance of an SCF complex containing the cullin-1 homolog CulE and FbxD, a newly described WD40-type F-box protein, than the complexes that predominate in cells defective in Skp1 hydroxylation or glycosylation. Similarly, the previously described FbxA–Skp1CulA complex was also more abundant in glycosylation-competent cells. The CulE interactome also included higher levels of proteasomal regulatory particles when Skp1 was glycosylated, suggesting increased activity consistent with greater association with F-box proteins. Finally, the interactome of FLAG-FbxD was modified when it harbored an F-box mutation that compromised Skp1 binding, consistent with an effect on the abundance of potential substrate proteins. We propose that O2-dependent posttranslational glycosylation of Skp1 promotes association with F-box proteins and their engagement in functional E3SCFUb ligases that regulate O2-dependent developmental progression.Timely protein degradation is a cornerstone of cell cycling and the regulation of numerous physiological and developmental processes. Eukaryotes have evolved an extensive array of polyubiquitination enzymes to tag proteins on a protein-by-protein basis as a recognition marker for degradation in the 26S proteasome. The cullin-RING ubiquitin ligases (CRLs)1 are a prominent subgroup of these enzymes (1) and consist of an E3 architecture that includes a substrate receptor, an adaptor (in most cases), the cullin scaffold, the RING protein, and an exchangeable E2 ubiquitin donor that has been charged with ubiquitin (Ub) by an E1 enzyme. The first discovered and still prototypic example is the CRL1 class (2), also referred to as SCF on account of the names of its founding subunits, Skp1, cullin-1, and F-box proteins (FBPs). The CRL1 (or SCF) complexes utilize FBPs as substrate receptors, Skp1 as the adaptor linking the FBP to the N-terminal region of cullin-1 (Cul1), and Rbx1 as the RING protein that tethers the E2 Ub donor to the Cul1 C-terminal region (see Fig. 2B). CRL1s can be activated by neddylation of Cul1 by a Nedd8-specific E2, which mobilizes Rbx1 to afford rotational flexibility of the E2 and displaces the inhibitor Cand1, permitting docking of the Skp1–FBP heterodimer (35). Deneddylation mediated by the eight-subunit COP9 signalosome is required for in vivo activity, suggesting that Cand1 serves as a substrate exchange factor to allow for re-equilibration of SCF complexes from preexisting subunits. Each reaction cycle requires the exchange of a new E2-Ub and typically assembles a K48-linked polyUb chain that is recognized by the proteasome. Substrate specificity is conferred by FBPs, a gene family that numbers 69 in humans, 20 in budding yeast, 300 in Caenorhabditis elegans, and ∼800 in Arabidopsis. Some characterized FBPs can recognize perhaps a dozen or more substrates, and the coding of recognition and the meaning of their control by the same FBP is under intense investigation (6). Recognition is often activated by posttranslational modification of the substrate (often phosphorylation). Regulation of SCF Ub ligases has centered on the neddylation cycle, which potentially influences all seven known CRLs. Regulation of Skp1, investigated in this paper, would be specific to CRLs possessing Skp1, which include CRL1 and possibly the minor class CRL7 (7).Open in a separate windowFig. 2.Skp1 modification pathway and global analysis of Skp1 interactions. A, Skp1 is sequentially modified by the indicated enzymes (in blue), resulting in the formation of a pentasaccharide at Pro143. B, model of the SCF complex in the context of the overall E3 Ub ligase, from studies in yeast, plants, and animals. Catalysis involves transfer of Ub from an exchangeable Ub-E2 conjugate to the substrate. Removal of Nedd8 by the COP9 signalosome facilitates binding of Cand1 to Cul1, which inhibits binding of Skp1 to Cul1. C, D, vegetative (growth stage) cells were filter-lysed, and a cytosolic fraction prepared via ultracentrifugation was chromatographed on a Superose 12 gel filtration column. Fractions were analyzed via Western blotting (representative examples are shown in C) followed by densitometry (D). The elution position of free Skp1 from a separate trial is indicated.The basic SCF model is thought to be widespread among eukaryotes but has been extensively studied only in fungi/yeasts, plants, and animals. The broad phylogeny represented by protists includes many benign and pathogenic unicellular organisms of great economic, health, and environmental impact. Emerging evidence reveals that Skp1 in some of these groups is subject to a novel form of prolyl 4(trans)-hydroxylation and complex glycosylation (8). The roles of these Skp1 modifications have been most studied in the social amoeba Dictyostelium, which undergoes a starvation-induced developmental program during which individual amoebae chemotactically aggregate into an initial mound that then elongates into a migratory slug. Under appropriate conditions, the slug reorganizes to form a fruiting body consisting of a ball of spores supported by a vertical cellular stalk. The slug-to-fruit switch, referred to as culmination, and sporulation are regulated by checkpoints that are sensitive to multiple factors, including O2 (911). Functional studies of Dictyostelium Skp1 hydroxylation and glycosylation reveal roles in regulating the O2 dependence of culmination and sporulation (1214). For example, wild-type (wt) cells require 7% to 10% O2 and phyA requires 18% to 21% O2 in order to achieve 50% spore formation (a quantitative measure of fruiting body formation), whereas glycosylation mutants exhibit a complex pattern of intermediate requirements (13). In addition, at 21% O2, phyA cells require an additional 3 to 4 h to complete development relative to their wt counterparts (14). In the apicomplexan Toxoplasma gondii, PhyA is also required for Skp1 glycosylation, and phyA parasites are deficient in proliferation, especially at low O2 (15).The idea that O2 availability is rate limiting for Skp1 modification was originally based on the observation that the Dictyostelium phyA phenotype mimics that of wt cells in low O2 (9). However, the majority of Skp1 is hydroxylated and glycosylated in wt cells even at low O2 levels where culmination is blocked or delayed. Further analysis of a submerged development model, in which terminal development depended on an atmosphere of 70% to 100% O2 in order to overcome the diffusion barrier posed by the water layer, showed that at atmospheric O2 levels of 5% to 21% where sporulation was blocked, unmodified Skp1 accumulated to a higher level than at permissive O2 levels (10). As Skp1 modifications are thought to be irreversible, this likely resulted from slow hydroxylation of newly synthesized Skp1. To address this in a more physiological setting, we investigated nascent Skp1 directly using metabolic labeling with [35S]Met/Cys and verified that the rate of hydroxylation of newly synthesized Skp1 polypeptide was indeed inversely proportional to O2 levels, which makes PhyA-mediated hydroxylation of Skp1 an excellent candidate for the primary O2 sensor for culmination.These modifications of Skp1 are of interest as a novel mechanism regulating the SCF ligase. Previously, we showed that hydroxylation and glycosylation of Dictyostelium Skp1 affect its conformation and promote binding to a soluble FBP, guinea pig Fbs1, in studies of purified proteins (16). Here we show that Dictyostelium Skp1 is indeed a subunit of a canonical SCF complex, as expected. The significance of undermodified Skp1 was examined via interactome analysis of Skp1 isoforms that accumulate in modification pathway mutants. Our findings revealed a lower abundance of SCF complexes than in wt cells, suggesting that Skp1 modification may promote SCF assembly and E3SCFUb ligase activities that control timely turnover of select proteins involved in developmental progression.  相似文献   

12.
Plasma membrane vesicles of HeLa cells are characterized by a drug-responsive oxidation of NADH. The NADH oxidation takes place in an argon or nitrogen atmosphere and in samples purged of oxygen. Direct assay of protein thiols by reaction with 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB; Ellman's reagent), suggests that protein disulfides may be the natural electron acceptors for NADH oxidation by the plasma membrane vesicles. In the presence of NADH, protein disulfides of the membranes were reduced with a concomitant stoichiometric increase in protein thiols. The increase in protein thiols was inhibited in parallel to the inhibition of NADH oxidation by the antitumor sulfonylurea LY181984 with an EC50 of ca. 30 nM. LY181984, with an EC50 of 30 nM, also inhibited a protein disulfide–thiol interchange activity based on the restoration of activity to inactive (scrambled) RNase and thiol oxidation. The findings suggest that thiol oxidation, NADH-dependent disulfide reduction (NADH oxidation), and protein disulfide–thiol interchange in the absence of NADH all may be manifestations of the same sulfonylurea binding protein of the HeLa plasma membrane. A surface location of the thiols involved was demonstrated using detergents and the impermeant thiol reagent p-chloromercuriphenylsulfonic acid (PCMPS). The surface location precludes a physiological role of the protein in NADH oxidation. Rather, it may carry out some other role more closely related to a function in growth, such as protein disulfide–thiol interchange coupled to cell enlargement.  相似文献   

13.
A software package was designed and used in a detailed study of the contact regions (interfaces) of a large number of protein–protein complexes using the PDB data. It appeared that for about 75% of the complexes the amino acid composition of the subunit surface in the contact region is not essential. Thus one may suggest that, along with the amino acid residues at the interface, the residues in the interior of the globules substantially contribute to protein–protein recognition. Such interactions between quite remote residues are most probably of electrical nature, and are involved in recognition by contributing to the overall electric field created by the protein molecule; the configuration of this field is perhaps the definitive factor of recognition. The overall field of the protein molecule is additively built of the fields created by each constituent residue, and it can be calculated as a sum of the fields created by the protein multipole (aggregate of partial electric charges assigned to every atom of the protein molecule). Preliminary assessment of the remote electrostatic interaction has been performed for ribonuclease subunits in vacuum. The results are indicative of a real possibility that the electric field created by the protein multipole can strongly influence the mutual orientation of molecules before Brownian collision.  相似文献   

14.
High-potential iron-sulfur protein (HiPIP) has been proposed to be involved in the iron respiratory electron transport chain in Acidithiobacillus ferrooxidans, which contains an [Fe(4)S(4)] cluster. We report here the assembly of an [Fe(4)S(4)] cluster in HiPIP from A. ferrooxidans ATCC 23270 in vitro in the presence of Fe(2+) and sulfide. The spectra and matrix-assisted laser desorption ionization-time of flight mass spectrometry results of holoHiPIP confirmed that the iron-sulfur cluster was correctly assembled into the protein.  相似文献   

15.
16.
《Journal of molecular biology》2019,431(7):1481-1493
Building on the substantial progress that has been made in using free energy perturbation (FEP) methods to predict the relative binding affinities of small molecule ligands to proteins, we have previously shown that results of similar quality can be obtained in predicting the effect of mutations on the binding affinity of protein–protein complexes. However, these results were restricted to mutations which did not change the net charge of the side chains due to known difficulties with modeling perturbations involving a change in charge in FEP. Various methods have been proposed to address this problem. Here we apply the co-alchemical water approach to study the efficacy of FEP calculations of charge changing mutations at the protein–protein interface for the antibody–gp120 system investigated previously and three additional complexes. We achieve an overall root mean square error of 1.2 kcal/mol on a set of 106 cases involving a change in net charge selected by a simple suitability filter using side-chain predictions and solvent accessible surface area to be relevant to a biologic optimization project. Reasonable, although less precise, results are also obtained for the 44 more challenging mutations that involve buried residues, which may in some cases require substantial reorganization of the local protein structure, which can extend beyond the scope of a typical FEP simulation. We believe that the proposed prediction protocol will be of sufficient efficiency and accuracy to guide protein engineering projects for which optimization and/or maintenance of a high degree of binding affinity is a key objective.  相似文献   

17.
We have developed a genetic circuit in Escherichia coli that can be used to select for protein–protein interactions of different strengths by changing antibiotic concentrations in the media. The genetic circuit links protein–protein interaction strength to β-lactamase activity while simultaneously imposing tuneable positive and negative selection pressure for β-lactamase activity. Cells only survive if they express interacting proteins with affinities that fall within set high- and low-pass thresholds; i.e. the circuit therefore acts as a bandpass filter for protein–protein interactions. We show that the circuit can be used to recover protein–protein interactions of desired affinity from a mixed population with a range of affinities. The circuit can also be used to select for inhibitors of protein–protein interactions of defined strength.  相似文献   

18.
The interaction between the pathogen and wheat–Aegilops lines with different resistance as well as their parental forms in the course of powdery mildew infection was studied using scanning electron microscopy. The course of infection in the line 51/99i and its parental form, the Rodina variety, proved to be similar. The plants of both genotypes featured pronounced adhesion of the primary infection structures to the surface of plant epidermal cells and the formation of large, well-developed colonies of the fungus, which was evidence for parasite–host compatibility. The development of powdery mildew on the line 135/99i was similar to that on the parental form Aegilops speltoides K-389. The pathogen–host interaction was characterized by a longer incubation period. Sparse fungal colonies were formed from mycelial hyphae with multiple hyphal lobes, and their adhesion to the surface of the epidermal cells was disturbed in most cases. Such a pattern of pathogen development indicated that the host plants had some resistance factors operating mainly at the level of pathogen penetration. The types of resistance in lines 95/99i and 56/99i were not characteristic of the parental form Ae. speltoides K-389, but they were described for Ae. speltoides samples from other natural ranges (Ryabchenko et al., 2002). This fact suggests that the immune potential of Ae. speltoides as a species is polygenic, and its elements can be transmitted to hybrids irrespective of concrete plants used as the donors of resistance.  相似文献   

19.
In vascular plants, the chloroplast NAD(P)H dehydrogenase complex (NDH-C) is assembled from five distinct subcomplexes, the membrane-spanning (subM) and the luminal (subL) subcomplexes, as well as subA, subB, and subE. The assembly process itself is poorly understood. Vascular plant genomes code for two related intrinsic thylakoid proteins, PHOTOSYNTHESIS-AFFECTED MUTANT68 (PAM68), a photosystem II assembly factor, and PHOTOSYNTHESIS-AFFECTED MUTANT68-LIKE (PAM68L). As we show here, inactivation of Arabidopsis thaliana PAM68L in the pam68l-1 mutant identifies PAM68L as an NDH-C assembly factor. The mutant lacks functional NDH holocomplexes and accumulates three distinct NDH-C assembly intermediates (subB, subM, and subA+L), which are also found in mutants defective in subB assembly (ndf5) or subM expression (CHLORORESPIRATORY REDUCTION4-3 mutant). NDH-C assembly in the cyanobacterium Synechocystis sp PCC 6803 and the moss Physcomitrella patens does not require PAM68 proteins, as demonstrated by the analysis of knockout lines for the single-copy PAM68 genes in these species. We conclude that PAM68L mediates the attachment of subB- and subM-containing intermediates to a complex that contains subA and subL. The evolutionary appearance of subL and PAM68L during the transition from mosses like P. patens to flowering plants suggests that the associated increase in the complexity of the NDH-C might have been facilitated by the recruitment of evolutionarily novel assembly factors like PAM68L.  相似文献   

20.
Paclobutrazol (PBZ), a member of the triazole family, protectedwheat (Triticum aestivum L.) seedlings from injury due to heat(50°C for 2.5 h) and paraquat (2 mM). Both stresses inducedphotoinhibition, loss of fresh weight and membrane integrity,suggesting the possible involvement of toxic oxygen species.This study tested the hypothesis that PBZ-induced protectionfrom stress is in part mediated by enhanced detoxification ofactive oxygen. The results support this hypothesis since PBZstimulated a 16, 32 and 21% increase in the activities of superoxidedismutase, ascorbate peroxidase (AP), and glutathione reductase(GR), on a fresh weight basis. The increased activities of APand GR were maintained to a higher degree than their correspondingcontrols after exposure to both heat and paraquat stress. Ascorbateand glutathione pools were l4 and 8% higher respectively inthe PBZ-treated wheat than in the controls. Within the cytoplasm,PBZ increased the activities of catalase (45%) and guaiacolperoxidase (29%) on a fresh weight basis and these higher activities,over the controls, were conserved after stress. It is suggestedthat the damage caused by two different stresses, heat and paraquat,is in part due to increased generation of active oxygen andthat PBZ protects plants by maintaining increased antioxidantenzyme activity. (Received May 10, 1993; Accepted October 29, 1993)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号