首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acclimation of rice photosynthesis to irradiance under field conditions   总被引:8,自引:0,他引:8  
Acclimation to irradiance was measured in terms of light-saturated photosynthetic carbon assimilation rates (P(max)), Rubisco, and pigment content in mature field-grown rice (Oryza sativa) plants in tropical conditions. Measurements were made at different positions within the canopy alongside irradiance and daylight spectra. These data were compared with a second experiment in which acclimation to irradiance was assessed in uppermost leaves within whole-plant shading regimes (10% low light [LL], 40% medium light [ML], and 100% high light [HL] of full natural sunlight). Two varieties, japonica (tropical; new plant type [NPT]) and indica (IR72) were compared. Values for Rubisco amount, chlorophyll a/b, and P(max) all declined from the top to the base of the canopy. In the artificial shading experiment, acclimation of P(max) (measured at 350 microL L(-1) CO(2)) occurred between LL and ML for IR72 with no difference observed between ML and HL. The Rubisco amount increased between ML and HL in IR72. A different pattern was seen for NPT with higher P(max) (measured at 350 microL L(-1) CO(2)) at LL than IR72 and some acclimation of this parameter between ML and HL. Rubisco levels were higher in NPT than IR72 contrasting with P(max). Comparison of data from both experiments suggests a leaf aging effect between the uppermost two leaf positions, which was not a result of irradiance acclimation. Results are discussed in terms of: (a) acclimation of photosynthesis and radiation use efficiency at high irradiance in rice, and (b) factors controlling photosynthetic rates of leaves within the canopy.  相似文献   

2.
3.
This study was performed to evaluate the ecophysiological acclimation of Catalpa bungei plantlets to different light conditions. We hypothesized that the acclimation of old and newly developed leaves to both increasing and decreasing irradiance should follow different patterns. The growth, photosynthesis, chlorophyll (Chl) content, and Chl fluorescence response were examined over a range of light treatments. The plants were grown under fixed light intensities of 80% (HH), 50% (MM), 30% (LL) of sun light and transferring irradiance of 80% to 50% (HM), 80% to 30% (HL), 30% to 50% (LM) and 30% to 80% (LH). For old leaves, light-saturation point, photosynthetic capacity, dark respiration rate of LH were lower than that of HH, while HL were higher than LL, indicating that light-response parameters were affected by the original growth light environment. Initial fluorescence increased and variable fluorescence decreased in LH and LM after transfer, and the PSII damage was more serious in LH than that in LM, and could not recover within 30 d. It suggested that the photoinhibition damage and recovery time in old leaves was related to the intensity of light after transfer. For the newly emerged leaves with leaf primordia formed under the same light environment, a significant difference was observed in leaf morphology and pigment contents, suggesting that previous light environment exhibited carry-over effect on the acclimation capacity to a new light environment. Our result showed that thinning and pruning intensity should be considered in plantation management, because great changes in light intensity may cause photoinhibition in shade-adapted leaves.  相似文献   

4.
蛋白核小球藻光驯化的快速光曲线变化   总被引:1,自引:0,他引:1  
通过测量快速光曲线研究了强光和弱光驯化对蛋白核小球藻(Chlorella pyrenoidosa)光合作用的影响。弱光驯化后的初始斜率α高于强光驯化后,而半饱和光强Ik明显低于强光驯化后,表明弱光驯化提高了蛋白核小球藻的捕光能力。强光驯化后最大光合速率Pm高于弱光驯化后,而光抑制参数β小于弱光驯化后,表明强光驯化提高了蛋白核小球藻的光合能力和对强光的耐受性。  相似文献   

5.
Elemental stoichiometry and organic composition were investigated in an Adriatic strain of Skeletonema marinoi, cultured at 25 [low light (LL)] and 250 [high light (HL)]µmol photon m?2 s?1. Inorganic carbon acquisition, fixation and allocation, and silicic acid and orthophosphate uptake were also studied. The C : P ratio was below the Redfield ratio, especially at LL. In HL cells, N quota was halved, C quota was similar, silica quota was lower, growth rate and long‐term net primary productivity were almost doubled, relative to LL cells. The HL : LL cell quota ratios were 6 for lipid, 0.5 for protein and 0.4 for carbohydrate. Phosphoenolpyruvate carboxylase (PEPc) and glutamine synthetase (GS) activities were unaffected by the growth irradiance; phosphoenolpyruvate carboxykinase (PEPck) was 2.5‐fold more active in LL cells. This suggests that in S. marinoi, C4 photosynthesis is unlikely, PEPc is anaplerotic and PEPck may be involved in the conversion of lipid C to carbohydrates, especially in LL cells. Because about 50% of the cost for the production of an HL cell is caused by lipid biosynthesis, we propose that the preferential allocation of C to lipid at HL takes advantage of the relatively high volume‐based energy content of lipids, in an organism that reduces its size at each vegetative cell division.  相似文献   

6.
To evaluate the acclimative ability of current-year and previous-year needles of a shade tolerant conifer Taxus baccata L. to contrasting irradiance conditions, seedlings were raised under 27% solar irradiance and at 3 years of age they were transferred to an experimental garden and grown for one season under full irradiance (HL), 18% irradiance (ML) or 5% irradiance (LL). Whereas previous year needles did not change anatomically, current year needles in HL were thicker and had a thicker palisade and spongy mesophyll, and greater leaf mass per area than ML or LL needles. LL needles had greater nitrogen concentration than HL needles irrespective of age but only previous year LL needles also had an increased N per area content, thanks to their lack of reduction in LMA. Adjustment of chlorophyll and carotenoid content occurred in both needle age classes with LL and ML needles having much higher concentrations but, in current year needles, only slightly higher per area content than HL needles. Chlorophyll a/b ratio was not affected by age or irradiance. These modifications had no significant effect on photosynthetic capacities, which did not significantly differ between the age classes in HL or LL treatment and between treatments. On the other hand, high growth irradiance resulted in a greater photochemical yield, photochemical quenching, apparent electron transport rate and inducible non-photochemical quenching in needles formed in the current season. In previous year needles, however, only inducible NPQ was enhanced by high irradiance with other parameters remaining identical among treatments. To test sensitivity to photoinhibition, at the end of the summer plants from the three irradiance levels were transferred to a HL situation and F v/F M was determined over the following 18 days. Sensitivity to photoinhibition was negatively related to growth irradiance and previous year needles were less photoinhibited than current year needles. Thus, differences in acclimation ability between needle age classes were most pronounced at the level of anatomy and light reactions of photosynthesis, both of which showed almost no plasticity in previous year needles but were considerably modified by irradiance in current year needles.  相似文献   

7.
Summary The photosynthetic pigments of the marine algaCryptomonas maculata are decreased under energy fluence rates of 4.4 Wm–2 (high light=HL). That this is a result of nitrogen deprivation following an increased cell growth rate triggered by high light in comparison to the control under 1.28 Wm–2 (low light=LL) is evident from combined pigment, growth rate and nutrient analyses. Fine structural studies by electron microscopy revealed that the electron opaque material in the thylakoid lumen of the plastid is lost under high light treatment parallel to the severe loss of almost 90% phycoerythrin-545. The reduction of chlorophylla andc is accompanied by a reversible disorganization of the thylakoid packing and the thylakoid membranes.In a combined freeze fracture study of HL and LL cells ofCryptomonas maculata it is demonstrated that the exoplasmic fracture face of the thylakoid membranes in HL cells possessed only 10 to 15% of the particles of the LL control; the 12.5 nm particle class was almost lacking, whereas particle populations with main sizes of 10 and 7.5 nm are preserved.The protoplasmic face, on the other hand, was less severely affected with only slight reduction in the particle frequency and a shift of the particle size from two populations with peaks at 10 and 7.5 nm to one class centred around 7.0 nm.  相似文献   

8.
The aim of this study was to investigate acclimation of micropropagated plants of Rhododendron ponticum subsp. baeticum to different irradiances and recovery after exposure to high irradiance. Plants grown under high (HL) or intermediate (IL) irradiances displayed higher values of maximum electron transport rate (ETRmax) and light saturation coefficient (Ek) than plants grown under low irradiance (LL). The capacity of tolerance to photoinhibition (as assessed by the response of photochemical quenching, qp) varied as follows: HL > IL > LL. Thermal energy dissipation (qN) was also affected by growth irradiance, with higher saturating values being observed in HL plants. Light-response curves suggested a gradual replacement of qp by qN with increasing irradiance. Following exposure to irradiance higher than 1500 μmol m−2 s−1, a prolonged reduction of the maximal photochemical efficiency of PS 2 (Fv/Fm) was observed in LL plants, indicating the occurrence of chronic photoinhibition. In contrary, the decrease in Fv/Fm was quickly reverted in HL plants, pointing to a reversible photoinhibition.  相似文献   

9.
The potential role of foliar carbon export features in the acclimation of photosynthetic capacity to differences and changes in light environment was evaluated. These features included apoplastic vs. symplastic phloem loading, density of loading veins, plasmodesmatal frequency in intermediary cells, and the ratio of loading cells to sieve elements. In initial studies, three apoplastic loaders (spinach, pea, Arabidopsis thaliana) exhibited a completely flexible photosynthetic response to changing light conditions, while two symplastic loaders (pumpkin, Verbascum phoeniceum), although able to adjust to different long-term growth conditions, were more limited in their response when transferred from low (LL) to high (HL) light. This suggested that constraints imposed by the completely physical pathway of sugar export might act as a bottleneck in the export of carbon from LL-acclimated leaves of symplastic loaders. While both symplastic loaders exhibited variable loading vein densities (low in LL and high in HL), none of the three apoplastic loaders initially characterized exhibited such differences. However, an additional apoplastic species (tomato) exhibited similar differences in vein density during continuous growth in different light environments. Furthermore, in contrast to the other apoplastic loaders, photosynthetic acclimation in tomato was not complete following a transfer from LL to HL. This suggests that loading vein density and loading cells per sieve element, and thus apparent loading surface capacity, play a major role in the potential for photosynthetic acclimation to changes in light environment. Photosynthetic acclimation and vein density acclimation were also characterized in the slow-growing, sclerophytic evergreen Monstera deliciosa. This evergreen possessed a lower vein density during growth in LL compared to HL and exhibited a more severely limited potential for photosynthetic acclimation to increases in light environment than the rapidly-growing, mesophytic annuals.  相似文献   

10.
Cells of the red alga Porphyridium cruentum (ATCC 50161) exposed to increasing growth irradiance exhibited up to a three-fold reduction in photosystems I and II (PSI and PSII) and phycobilisomes but little change in the relative numbers of these components. Batch cultures of P. cruentum were grown under four photon flux densities of continuous white light; 6 (low light, LL), 35 (medium light, ML), 180 (high light, HL), and 280 (very high light, VHL) microeinsteins per square meter per second and sampled in the exponential phase of growth. Ratios of PSII to PSI ranged between 0.43 and 0.54. About three PSII centers per phycobilisome were found, regardless of growth irradiance. The phycoerythrin content of phycobilisomes decreased by about 25% for HL and VHL compared to LL and ML cultures. The unit sizes of PSI (chlorophyll/P700) and PSII (chlorophyll/QA) decreased by about 20% with increase in photon flux density from 6 to 280 microeinsteins per square meter per second. A threefold reduction in cell content of chlorophyll at the higher photon flux densities was accompanied by a twofold reduction in β-carotene, and a drastic reduction in thylakoid membrane area. Cell content of zeaxanthin, the major carotenoid in P. cruentum, did not vary with growth irradiance, suggesting a role other than light-harvesting. HL cultures had a growth rate twice that of ML, eight times that of LL, and slightly greater than that of VHL cultures. Cell volume increased threefold from LL to VHL, but volume of the single chloroplast did not change. From this study it is evident that a relatively fixed stoichiometry of PSI, PSII, and phycobilisomes is maintained in the photosynthetic apparatus of this red alga over a wide range of growth irradiance.  相似文献   

11.
We compared autotrophic growth of the dinoflagellate Karlodinium micrum (Leadbeater et Dodge) and the cryptophyte Storeatula major (Butcher ex Hill) at a range of growth irradiances (Eg). Our goal was to determine the physiological bases for differences in growth–irradiance relationships between these species. Maximum autotrophic growth rates of K. micrum and S. major were 0.5 and 1.5 div.·d?1, respectively. Growth rates were positively correlated with C‐specific photosynthetic performance (PPC, g C·g C?1·h?1) (r2=0.72). Cultures were grouped as light‐limited (LL) and high‐light (HL) treatments to allow interspecific comparisons of physiological properties that underlie the growth–irradiance relationships. Interspecific differences in the C‐specific light absorption rate (EaC, mol photons·g C?1·h?1) were observed only among HL acclimated cultures, and the realized quantum yield of C fixation (φC(real.), mol C·mol photons?1) did not differ significantly between species in either LL or HL treatments. The proportion of fixed C that was incorporated into new biomass was lower in K. micrum than S. major at each Eg, reflecting lower growth efficiency in K. micrum. Photoacclimation to HL in K. micrum involved a significant loss of cellular photosynthetic capacity (Pmaxcell), whereas in S. major, Pmaxcell was significantly higher in HL acclimated cells. We conclude that growth rate differences between K. micrum and S. major under LL conditions relate primarily to cell metabolism processes (i.e. growth efficiency) and that reduced chloroplast function, reflected in PPC and photosynthesis–irradiance curve acclimation in K. micrum, is also important under HL conditions.  相似文献   

12.
The ability of plants to increase their net CO2 assimilation rate in response to increased irradiance is due to morphological and physiological changes, which might be related to their shade tolerance and leaf ontogeny, but few studies have considered morphology and physiology. Two sympatric oak species (the shade-tolerant Q. petraea and the comparatively shade-intolerant Q. pyrenaica) were grown in hydroponic solution in low-light (LL) and high-light (HL) conditions. 5 months after leaf expansion under these conditions, half of the LL plants were transferred to high light (TLH). Transfer of Q. pyrenaica, from low- to high light led to photoinhibition and after 21 days in higher light there was little acclimation of the maximum rate of carboxylation (VCmax) or the maximum rate of electron transport (Jmax). Q. pyrenaica TLH plants showed lower stomatal conductance at all times compared to plants growing in LL. Stomatal closure was the main limitation to photosynthesis after transfer in Q. pyrenaica. The increase in evaporative demand upon TLH did not affect hydraulic conductivity of Q. pyrenaica. In contrast, the more shade-tolerant Q. petraea showed a greater degree of acclimation of gas exchange in TLH than Q. pyrenaica and two weeks after transfer gas-exchange rates were as high as in LL plants. In Q. petraea, the most important changes occurred at the level of leaf biochemistry with significant increase in VCmax that decreased the Jmax/VCmax ratio below values recorded in HL plants. However, this potential increase in photosynthesis was at least partially hamstrung by a decrease in internal conductance, which highlights the importance of internal conductance in acclimation to higher light in mature leaves. Neither oak species reached the photosynthetic rates of HL plants; however a trend towards leaf acclimation was observed in Q. petraea while the transfer was harmful to the leaves of Q. pyrenaica developed in the shade.  相似文献   

13.
Acclimation of plant photosynthesis to light irradiance (photoacclimation) involves adjustments in levels of pigments and proteins and larger scale changes in leaf morphology. To investigate the impact of rising atmospheric CO2 on crop physiology, we hypothesize that elevated CO2 interacts with photoacclimation in rice (Oryza sativa). Rice was grown under high light (HL: 700 µmol m?2 s?1), low light (LL: 200 µmol m?2 s?1), ambient CO2 (400 µl l?1) and elevated CO2 (1000 µl l?1). Leaf six was measured throughout. Obscuring meristem tissue during development did not alter leaf thickness indicating that mature leaves are responsible for sensing light during photoacclimation. Elevated CO2 raised growth chamber photosynthesis and increased tiller formation at both light levels, while it increased leaf length under LL but not under HL. Elevated CO2 always resulted in increased leaf growth rate and tiller production. Changes in leaf thickness, leaf area, Rubisco content, stem and leaf starch, sucrose and fructose content were all dominated by irradiance and unaffected by CO2. However, stomata responded differently; they were significantly smaller in LL grown plants compared to HL but this effect was significantly suppressed under elevated CO2. Stomatal density was lower under LL, but this required elevated CO2 and the magnitude was adaxial or abaxial surface‐dependent. We conclude that photoacclimation in rice involves a systemic signal. Furthermore, extra carbohydrate produced under elevated CO2 is utilized in enhancing leaf and tiller growth and does not enhance or inhibit any feature of photoacclimation with the exception of stomatal morphology.  相似文献   

14.
The electron transport rates and coupling factor activity in the chloroplasts; adenylate contents, rates of photosynthesis and respiration in the leaves as well as activity of isolated mitochondria were investigated in Pisum sativum L. leaves of plants grown under low or high light intensity and exposed after detachment to 5 mM Pb(NO(3))(2). The presence of Pb(2+) reduced rate of photosynthesis in the leaves from plants grown under the high light (HL) and low light (LL) conditions, whereas the respiration was enhanced in the leaves from HL plants. Mitochondria from Pb(2+) treated HL-leaves oxidized glycine at a higher rate than those isolated from LL leaves. ATP content in the Pb-treated leaves increased to a greater extend in the HL than LL grown plants. Similarly ATP synthase activity increased markedly when chloroplasts isolated from control and Pb-treated leaves of HL and LL grown plants were subjected to high intensity light. The presence of Pb ions was found inhibit ATP synthase activity only in chloroplasts from LL grown plants or those illuminated with low intensity light. Low light intensity during growth also lowered PSI electron transport rates and the Pb(2+) induced changes in photochemical activity of this photosystem were visible only in the chloroplasts isolated from LL grown plants. The activity of PSII was influenced by Pb ions on similar manner in both light conditions. This study demonstrates that leaves from plants grown under HL conditions were more resistant to lead toxicity than those obtained from the LL grown plants. The data indicate that light conditions during growth might play a role in regulation of photosynthetic and respiratory energy conservation in heavy metal stressed plants by increasing the flexibility of the stoichiometry of ATP to ADP production.  相似文献   

15.
Natural regeneration of European beech (Fagus sylvatica L.) establishes under shade, but sudden exposure to high irradiance may occur due to openings in the canopy. To elucidate ecophysiological mechanisms associated with survival of European beech seedlings, the gas exchange, chlorophyll concentrations, and chlorophyll a fluorescence parameters of two different beech populations were studied under changing light conditions. Plants were grown both in a growth chamber and at a natural site (one population) where the seedlings were raised in containers placed in understory and in simulated canopy gaps. Upon exposure to high light in the growth chamber, photosynthetic rates of shade-acclimated leaves of seedlings from both populations increased severalfold and then decreased over several days to the rates of the low-light control seedlings. High-light seedlings always had the highest photosynthetic rates. Initial fluorescence displayed a trend opposite that of photosynthesis; it increased over time, and relative fluorescence and half-time rise declined continuously until the end of experiment to very low values. Exposure to high light of shade-acclimated seedlings resulted in a shift in chlorophyll concentrations to levels intermediate between high-light and low-light seedlings. The light treatment effects were statistically greater than population effects; however, seedlings from the Abetone population were found to be more susceptible to changing light conditions than seedlings from Sicily. Reciprocal light treatments on plants growing at the natural site confirmed the results obtained in the growth chamber experiment. Overall, beech seedlings grown in the field appeared to have a fairly large acclimation potential achieved by plasticity in the photosynthetic apparatus. The lack of pronounced acclimation to high light in seedlings grown in the growth chamber was ascribed to a threshold-type relationship between the acclimation capacity and the level of damage. These observations on the limited potential for acclimation to high light in leaves of European beech seedlings which show a clear capability to exploit sunflecks, are discussed in relation to regeneration following canopy gap formation and reinforce the view of the central role of gap formation in forest dynamics. We conclude that small forest gaps (in which sunflecks play a major role) may present a favorable environment for survival and growth of beech because of their limited ability to acclimate to a sudden increase in irradiance and because of the moderate levels of light stress found in small gaps.  相似文献   

16.
Li Z  Zhang S  Hu H  Li D 《Journal of plant research》2008,121(6):559-569
Photosynthesis, leaf structure, nitrogen content and nitrogen allocation in photosynthetic functions of Cypripedium flavum were studied in a naturally varying light regime. Light-saturated leaf net photosynthetic rate (A (max)) was strongly correlated with leaf dry mass per area (LMA), mesophyll conductance (g (m)) and area-based leaf nitrogen content (N(area)), with all variables increasing with increasing irradiance. Such coordinate variation of all these parameters illustrates the plastic response of leaf structure to high light (HL). Leaf N(area) was greater under HL than in low light (LL). The fractions of leaf nitrogen partitioning in carboxylation (P (R)) and bioenergetics (P (B)) were positively related to LMA. In contrast, P (R) and P (B) decreased with increasing mass-based leaf nitrogen content (N(mass)). However, no correlation was found between leaf nitrogen investment in light harvesting (P (L)) and either LMA or N(mass). Like maximum rate of carboxylation (V (cmax)) and electron transport (J (max)), the J (max)/V (cmax) ratio, which was strongly correlated to LMA, also increased significantly with irradiance. Under HL, leaf maximum photosynthetic nitrogen efficiency (ANUE) and intrinsic water use efficiency (WUE) were greater than in LL conditions, despite a small difference in WUE. This suggests that a functional balance in the photosynthetic machinery favors leaf photosynthetic plasticity of C. flavum in response to different light conditions. Given an ample soil nitrogen supply, C. flavum may offset its susceptibility to HL by efficient nitrogen use and higher stomatal and mesophyll conductance against photoinhibition so as to keep leaf photosynthesis positive.  相似文献   

17.
In this study we investigated the ability of Chara intermedia to acclimate to different irradiances (i.e. “low-light” (LL): 20–30 μmol photons m−2 s−1 and “high-light” (HL): 180–200 μmol photons m−2 s−1) and light qualities (white, yellow and green), using morphological, photosynthesis, chlorophyll fluorescence and pigment analysis.Relative growth rates increased with increasing irradiance from 0.016 ± 0.003 (LL) to 0.024 ± 0.005 (HL) g g−1 d−1 fresh weight and were independent of light quality. A growth-based branch orientation towards high-light functioning as a mechanism to protect the plant from excessive light was confirmed. It was shown that the receptor responsible for the morphological reaction is sensitive to blue-light.C. intermedia showed higher oxygen evolution (up to 10.5 (HL) vs. 4.5 (LL) nmol O2 mg Chl−1 s−1), photochemical and energy-dependent Chl fluorescence quenching and a lower Fv/Fm after acclimation to HL. With respect to qP, the acclimation of the photosynthetic apparatus depended on light quality and needed the blue part of the spectrum for full development. In addition, pigment composition was influenced by light and the Chl a/Car and Antheraxanthin (A) + Zeaxanthin (Z)/Violaxanthin (V) + A + Z (DES) ratios revealed the expected acclimation behaviour in favour of carotenoid protection under HL (i.e. decrease of Chl a/Car from 3.41 ± 0.48 to 2.30 ± 0.35 and increase of DES from 0.39 ± 0.05 to 0.87 ± 0.03), while the Chl a/Chl b ratios were not significantly affected. Furthermore it was shown that morphological light acclimation mechanisms influence the extent of the physiological modifications.  相似文献   

18.
Photosynthetic acclimation, the ability to adjust the composition of the thylakoid membrane to optimise the efficiency of electron transfer to the prevailing light conditions, is crucial to plant fitness in the field. While much is known about photosynthetic acclimation in Arabidopsis, to date there has been no study that combines both quantitative label-free proteomics and photosynthetic analysis by gas exchange, chlorophyll fluorescence and P700 absorption spectroscopy. Using these methods we investigated how the levels of 402 thylakoid proteins, including many regulatory proteins not previously quantified, varied upon long-term (weeks) acclimation of Arabidopsis to low (LL), moderate (ML) and high (HL) growth light intensity and correlated these with key photosynthetic parameters. We show that changes in the relative abundance of cytb6f, ATP synthase, FNR2, TIC62 and PGR6 positively correlate with changes in estimated PSII electron transfer rate and CO2 assimilation. Improved photosynthetic capacity in HL grown plants is paralleled by increased cyclic electron transport, which positively correlated with NDH, PGRL1, FNR1, FNR2 and TIC62, although not PGR5 abundance. The photoprotective acclimation strategy was also contrasting, with LL plants favouring slowly reversible non-photochemical quenching (qI), which positively correlated with LCNP, while HL plants favoured rapidly reversible quenching (qE), which positively correlated with PSBS. The long-term adjustment of thylakoid membrane grana diameter positively correlated with LHCII levels, while grana stacking negatively correlated with CURT1 and RIQ protein abundance. The data provide insights into how Arabidopsis tunes photosynthetic electron transfer and its regulation during developmental acclimation to light intensity.  相似文献   

19.
The effects of high PAR (400–700 nm), UVA (315–400 nm), and UVB (280–315 nm) radiation on viability and photosynthesis were investigated for Chaetoceros brevis Schütt. This Antarctic marine diatom was cultivated under low, medium, and high irradiance and nitrate, phosphate, silicate, and iron limitation before exposure to a simulated surface irradiance (SSI) treatment, with and without UVB radiation. Light‐harvesting and protective pigment composition and PSII parameters were determined before SSI exposure, whereas viability was measured by flow cytometry in combination with a viability stain after the treatment. Recovery of PSII efficiency was measured after 20 h in dim light in a separate experiment. In addition, low and high irradiance acclimated cells were exposed outdoors for 4 h to assess the effects of natural PAR, UVA, and UVB on viability. Low irradiance acclimated cells were particularly sensitive to photo induced viability loss, whereas no viability loss was found after acclimation to high irradiance. Furthermore, nutrient limitation reduced sensitivity to photo induced viability loss, relative to nutrient replete conditions. No additional viability loss was found after UVB exposure. Sunlight exposed cells showed no additional UVB effect on viability, whereas UVA and PAR significantly reduced the viability of low irradiance acclimated cells. Recovery of PSII function was nearly complete in cultures that survived the light treatments. Increased resistance to high irradiance coincided with an increased ratio between protective‐ and light‐harvesting pigments before the SSI treatment, demonstrating the importance of nonphotochemical quenching by diatoxanthin for survival of near‐surface irradiance. We conclude that a sudden transfer to high irradiance can be fatal for low irradiance acclimated C. brevis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号