首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Cycliophora is one of the most recently described metazoan phyla and hitherto includes only two species: Symbion pandora and Symbion americanus . With a very complex life cycle, cycliophorans are regarded as an enigmatic group with an uncertain phylogenetic position, although they are commonly considered lophotrochozoan protostomes. In order to extend the database concerning the distribution of immunoreactive substances in the free-swimming chordoid larva of S. pandora , we investigated synapsin immunoreactivity using fluorescence-coupled antibodies in combination with confocal laserscanning microscopy. Moreover, we analyzed the co-localization patterns of synapsin, serotonin, and RFamide-like immunoreactivity in the chordoid larva by 3D imaging technology based on the confocal microscopy image stacks. Synapsin is expressed in large parts of the bilobed anterior cerebral ganglion including anterior and dorsal projections. Two pairs of ventral neurites run longitudinally into the larval body of which the inner pair shows only weak, scattered synapsin immunoreactivity. In addition, a lateral synapsin immunoreactive projection emerges posteriorly from each ventral longitudinal axon. Double immunostaining shows co-localization of synapsin and serotonin in the cerebral ganglion, the outer and the inner ventral neurites, and the anterior projections. Synapsin and RFamide-like immunoreactivity co-occur in the cerebral ganglion, the outer ventral neurites, and the dorsal projections. Accordingly, the cerebral ganglion and the outer ventral neurites are the only neural structures that co-express the two neurotransmitters and synapsin. The overall neuroanatomical condition of the cycliophoran chordoid larva resembles much more the situation of adult rather than larval life cycle stages of a number of spiralian taxa.  相似文献   

2.
To date, the phylum Cycliophora comprises only one described extant species of acoelomate marine invertebrates, Symbion pandora. Adult specimens live commensally on the mouthparts of the Norwegian lobster, Nephrops norvegicus. Its complicated life cycle includes an asexually produced Pandora larva and a sexually produced chordoid larva. Despite detailed TEM investigations and its inclusion in recent molecular phylogenetic analyses, cycliophoran relationships still remain enigmatic. In order to increase the morphological database, I investigated the anatomy of the nervous system and the musculature of the chordoid larva by applying fluorescence-coupled antibodies against the neurotransmitters serotonin and FMRFamide, as well as FITC-coupled phalloidin to label filamentous F-actin, in combination with confocal laser scanning microscopy. The FMRFamidergic nervous system shows a bilobed anterior ganglion and one pair of ventral nerve cords, while serotonin is distributed in a scattered pattern in the anterior ganglion. In addition, there are two pairs of ventral serotonergic nerves, of which the inner pair fuses with the outer nerve cords in the posterior third of the larva. The musculature comprises an outer layer of six units of circular body wall muscles, several helicoid muscle fibers, a set of paired longitudinal muscles that span the entire anterior-posterior axis of the larva, and a few oblique muscle strands. Furthermore, an anterior muscle complex and one pair of posterior muscles are present. The chordoid organ consists of a number of distinct subunits that are each formed by a dense layer of circular muscle fibers.The overall arrangement of the oblique and longitudinal muscles as well as the body wall musculature in the chordoid larva of Symbion pandora exhibits similarities with the condition found in certain rotifers. This is congruent with some recent phylogenies based on 18S rRNA sequences but additional morphological, developmental, and molecular data are needed to clarify the phylogenetic relationships of Cycliophora.  相似文献   

3.
The relationship between phylogeny and nucleomorph genome size was examined in 16 strains of cryptomonad algae using pulsed‐field gel electrophoresis, Southern hybridization and phylogenetic analyses. Our results suggest that all cryptomonads examined in this study contain three nucleomorph chromosomes and their total genome size ranges from 495 to 750 kb. In addition, we estimated the plastid genome size of the respective organisms. The plastid genomes of photosynthetic strains were approximately 120–160 kb in size, whereas the non‐photosynthetic Cryptomonas paramecium NIES715 possesses a genome of approximately 70 kb. Phylogenetic analysis of the nuclear small subunit ribosomal DNA (SSU rDNA) gene showed that nucleomorph genome size varies considerably within closely related strains. This result indicates that the reduction of nucleomorph genomes is a rapid phenomenon that occurred multiple times independently during cryptomonad evolution. The nucleomorph genome sizes of Cryptomonas rostratiformis NIES277 appeared to be approximately 495 kb. This is smaller than that of Guillardia theta CCMP327, which until now was thought to have the smallest known nucleomorph genome size among photosynthetic cryptomonads.  相似文献   

4.
J. M. Bohn    T. Heinzeller 《Acta zoologica》1999,80(3):241-249
Bohn, J. M. & Heinzeller, T. 1999. Morphology of the bourgueticrinid and isocrinid aboral nervous system and its possible phylogenetic implications (Echinodermata, Crinoidea). — Acta Zoologica (Stockholm) 80: 241-249.
On the basis of semithin serial sections the aboral nervous system within the calyx of five bourgueticrinid and one isocrinid species was reconstructed using the computer programm NIH Image. The aboral nervous system of all bourgueticrinids belongs to a common type which is proposed to be called ' Bathycrinus -type' (B-type), that differs from the ' Isocrinus -type' (I-type). The morphology of the B-type and the I-type are described and differences are discussed. Together with the B-type there are now six aboral nervous system types well established and the consequences regarding phylogeny are discussed. Conclusions: 1) The morphology of the aboral nervous system may be a useful tool for the clarification of relationships between crinoid groups; 2) All known aboral nervous system types can be derived from the I-type, which seems to be the most primitive one; 3) The B-type aboral nervous system is probably a synapomorphic feature charac-terizing a monophyletic group within the Bourgueticrinida.  相似文献   

5.
Cycliophora is a recently described phylum of enigmatic metazoans with a very complex life cycle that includes several sexual and asexual stages. Symbion pandora and Symbion americanus are the only two cycliophoran species hitherto described, of which morphological and genetic knowledge is still deficient to clarify the phylogenetic position of the phylum. Aiming to increase the database on the cycliophoran neural architecture, we investigated serotonin immunoreactivity in the free swimming Pandora larva, the Prometheus larva, and the adult dwarf male of S. americanus. In the larval forms, serotonin is mainly expressed in a ring-shaped pattern at the periphery of the antero-dorsal cerebral ganglion. Additionally, several serotonergic perikarya emerge from both sides of the cerebral ganglion. Thin neurites project anteriorly from the cerebral ganglion, while a pair of ventral longitudinal neurites emerges laterally and runs along the anterior-posterior body axis. Posteriorly, the ventral neurites fuse and extend as a posterior projection. In the dwarf male, serotonin is found mainly in the commissural neuropil of the large anterior cerebral ganglion. In addition, serotonin immunoreactivity is present in the most anterior region of the ventral neurites. Comparative analysis of spiralian nervous systems demonstrates that the neuroanatomy of the cycliophoran larval stages resembles much more the situation of adult rather than larval spiralians, which may be explained by secondary loss of larval structures and heterochronic shift of adult components into the nervous system of the Pandora and the Prometheus larva, respectively.  相似文献   

6.
7.
Avian neoptile feathers are defined as the first feather generation, which covers the chick after hatching, and usually described as simple structures consisting of numerous downy barbs which are radially symmetrically arranged and come together in a short calamus. In contrast, in some birds (e.g., Anas platyrhynchos, Dromaius novaehollandiae) the neoptile feathers have a prominent rhachis, and therefore display clear bilateral symmetry. Because the symmetrical variety found in neoptile feathers is poorly understood, their morphology was studied in a more comprehensive and phylogenetic approach. Neoptile body feathers from over 22 bird species were investigated using light microscopy, SEM, and MicroCT. Characters such as an anterior–posterior axis, a central rhachis, medullary cells, and structure of the calamus wall were defined and mapped onto recent phylogenetic hypotheses for extant birds. It can be shown that bilaterally symmetric neoptile feathers (with a solid calamus wall) were already present in the stem lineage of crown‐group birds (Neornithes). In contrast, simple radially symmetric neoptile feathers (with a fragile calamus wall) are an apomorphic character complex for the clade Neoaves. The simple morphology of this feather type may be the result of a reduced period of development during embryogenesis. To date, embryogenesis of neoptile feathers from only a few bird species was used as a model to reconstruct feather evolution. Because this study shows that the morphology of neoptile feathers is more diverse and even shows a clear phylogenetic signal, it is necessary to expand the spectrum of “model organisms” to species with bilaterally symmetric neoptile feathers and compare differences in the frequency of feather development from a phylogenetic point of view. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

8.
Abstract. The terrestrial polychaete Hrabeiella periglandulata has many features in common with the Clitellata and the polychaete taxon Parergodrilidae. An ultrastructural investigation of the central nervous system and the sense organs of H. periglandulata individuals was undertaken to look for structural similarities with these taxa as well as to elucidate whether these structures might exhibit adaptive characters typical of terrestrial annelids in general. The central nervous system of H. periglandulata is subepidermal and consists of a brain situated in the first achaetigerous segment. The circumoesophageal connectives are without dorsal and ventral roots, and the ventral nerve cord has closely associated connectives and ill-defined ganglia. In contrast to clitellates and the terrestrial parergodrilid Parergodrilus heideri , nuchal organs are present. They are internal and highly modified compared with those of marine polychaetes but are similar to those of the intertidal parergodrilid Stygocapitella subterranea . A pair of ciliary sense organs is present inside the brain, resembling similar structures in many microdrile oligochaetes. These observations indicate that there are, in fact, structural similarities between the nervous system and the sense organs of clitellates, parergodrilids, and Hrabeiella individuals. These similarities may very likely be the result of convergent evolution in adaptation to the terrestrial environment.  相似文献   

9.
Chaetognaths (arrow worms) play an important role as predators in planktonic food webs. Their phylogenetic position is unresolved, and among the numerous hypotheses, affinities to both protostomes and deuterostomes have been suggested. Many aspects of their life history, including ontogenesis, are poorly understood and, though some aspects of their embryonic and postembryonic development have been described, knowledge of early neural development is still limited. This study sets out to provide new insights into neurogenesis of newly hatched Spadella cephaloptera and their development during the following days, with attention to the two main nervous centers, the brain and the ventral nerve center. These were examined with immunohistological methods and confocal laser-scan microscopic analysis, using antibodies against tubulin, FMRFamide, and synapsin to trace the emergence of neuropils and the establishment of specific peptidergic subsystems. At hatching, the neuronal architecture of the ventral nerve center is already well established, whereas the brain and the associated vestibular ganglia are still rudimentary. The development of the brain proceeds rapidly over the next 6 days to a state that resembles the adult pattern. These data are discussed in relation to the larval life style and behaviors such as feeding. In addition, we compare the larval chaetognath nervous system and that of other bilaterian taxa in order to extract information with phylogenetic value. We conclude that larval neurogenesis in chaetognaths does not suggest an especially close relationship to either deuterostomes or protostomes, but instead displays many apomorphic features.  相似文献   

10.
Traditionally, Panarthropoda (Euarthropoda, Onychophora, Tardigrada) are regarded as being closely related to Annelida in a taxon Articulata, but this is not supported by molecular analyses. Comparisons of gene sequences suggest that all molting taxa (Panarthropoda, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera) are related in a monophyletic taxon Ecdysozoa. An examination of the characters supporting Articulata reveals that only segmentation with a teloblastic segment formation and the existence of segmental coelomic cavities with nephridia support the Articulata, whereas all other characters are modified or reduced in the panarthropod lineage. Another set of characters is presented that supports the monophyly of Ecdysozoa: molting under influence of ecdysteroid hormones, loss of locomotory cilia, trilayered cuticle and the formation of the epicuticle from the tips of epidermal microvilli. Comparative morphology suggests Gastrotricha as the sister group of Ecdysozoa with the synapomorphies: triradiate muscular sucking pharynx and terminal mouth opening. Thus there are morphological characters that support Articulata, but molecular as well as morphological data advocate Ecdysozoa. Comparison of both hypotheses should prompt further thorough and targeted investigations. J. Morphol. 238:263–285, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Using immunohistochemistry in combination with confocal laser scanning microscopy, the serotonergic nervous systems of major tunicate taxa were studied in three-dimensional detail. Organisms analyzed included aplousobranchiate, phlebobranchiate, and stolidobranchiate ascidian larvae, appendicularian juveniles and adults, and doliolid oozooids. Outgroup comparisons to notochordates showed that the serotonergic nervous system of the last common ancestor of Chordata consisted of two elements: (i) an anterior concentration of serotonergic cell bodies, and (ii) a fiber network that followed posteriorly and gave rise to fiber tracts that descended towards the effective somatic lateral musculature. Within Tunicata, the nervous systems of Appendicularia and Aplousobranchiata appear serotonin-reduced or negative. This could be interpreted as a heterochronic reduction and a synapomorphy between Appendicularia and Aplousobranchiata. In this hypothesis, free-living Appendicularia are derived within Tunicata, and a biphasic life cycle with a free-swimming larva and a sessile, ascidian-like adult is most parsimoniously reconstructed for the last common ancestor of Tunicata. The close spatial relation of the serotonergic cell cluster with the statocyte complex suggests a function as an integrative control center for the coordination of locomotion. A similar anterior concentration of serotonergic nerve cells is known from tornaria larvae.See also Electronic Supplement at: http://www.senckenberg.de/odes/05-02.htm  相似文献   

12.
The morphological diversity of locomotor appendages in Arachnida is surveyed lo reconstruct phylogenetic relationships and discover evolutionary trends in form and function. The appendicular skeleton and musculature of representatives from the ten living arachnid orders ate described, and a system of homology is proposed. Character polarities are established through comparison with an outgroup. Limulus polyphemus Xiphosura). Cladistic analysis suggests that Arachnida is monophyletic and that absence of extensor muscles is a primitive condition. Extensors are primitively absent in Araneae. Amblypygi, Uropygi, Palpigradi, Ricinulei and Acari. Most similarities in the appendages of these orders are symplesiomorphic so that phylogenetic relationships among the 'extensorless' groups cannot be resolved solely on the basis of appendicular characters. Extensor muscles appear to have evolved once, and their presence is considered a synapomorphic feature of Opiliones, Scorpiones, Pseudoscorpiones and Solifugae. Solifugae lack extensors, but a parsimonious interpretation of other characters indicates that this is a secondary, derived condition. The phylogenetic relationships among these four orders are clarified by modifications of the patellotibial joint. Cladistic analysis indicates that Opiliones may be the sister group of the other three orders and that Scorpiones is the sister group of Pseudoscorpiones and Solifugae. Conclusions concerning phylogenetic relationships and evolutionary morphology presented here differ substantially from those of earlier studies on the locomotor appendages of Arachnida.  相似文献   

13.
The morphological diversity of locomotor appendages in Arachnida is surveyed lo reconstruct phylogenetic relationships and discover evolutionary trends in form and function. The appendicular skeleton and musculature of representatives from the ten living arachnid orders ate described, and a system of homology is proposed. Character polarities are established through comparison with an outgroup. Limulus polyphemus Xiphosura). Cladistic analysis suggests that Arachnida is monophyletic and that absence of extensor muscles is a primitive condition. Extensors are primitively absent in Araneae. Amblypygi, Uropygi, Palpigradi, Ricinulei and Acari. Most similarities in the appendages of these orders are symplesiomorphic so that phylogenetic relationships among the ‘extensorless’ groups cannot be resolved solely on the basis of appendicular characters. Extensor muscles appear to have evolved once, and their presence is considered a synapomorphic feature of Opiliones, Scorpiones, Pseudoscorpiones and Solifugae. Solifugae lack extensors, but a parsimonious interpretation of other characters indicates that this is a secondary, derived condition. The phylogenetic relationships among these four orders are clarified by modifications of the patellotibial joint. Cladistic analysis indicates that Opiliones may be the sister group of the other three orders and that Scorpiones is the sister group of Pseudoscorpiones and Solifugae. Conclusions concerning phylogenetic relationships and evolutionary morphology presented here differ substantially from those of earlier studies on the locomotor appendages of Arachnida.  相似文献   

14.
Gerhard Becker 《Hydrobiologia》2005,538(1-3):23-53
Recent discussions of ostracod systematics have focused on soft anatomy, both as seen in extant groups and as recorded by rare examples of special fossil preservation. The position of the fossil Palaeocopina and Leperditicopida, for which no substantial soft part evidence has yet been found, remains in the view of post-Palaeozoic workers uncertain, with some doubt as to whether they should be retained within the Ostracoda. The evolution of carapace bauplans (e.g. the development of brood pouches and lobal structures in palaeocopids as well as the development of adductor muscle scar patterns, calcified inner lamellae and carapace incisures in podocopines) is discussed in relation to presumed soft anatomy. It seems possible to distinguish between plesiomorphic (ancestral, simple) and apomorphic (derived, advanced) characters and consider their significance in ostracod systematics. Although the presumed ‘protostracod’ is not known, the combination of soft anatomy, carapace architecture and behaviour (feeding techniques, brood care) provide evidence of a general body plan which appeared (at the latest) during the Ordovician and continuously evolved towards the anatomy of modern ostracods. In parallel lineages, plesiomorphic forms have died out (leperditicopids and most palaeocopines as well as metacopines), while apomorphic lineages (‘drepanellid archetype’ of palaeocopines; resistant platycopines, podocopines and myodocopines) have survived all extinction events. The evidence supports the retention of the Palaeocopina (and probably the Leperditicopida) in the Ostracoda.  相似文献   

15.
16.
We applied fluorescence staining of F-actin, confocal laser scanning microscopy, as well as bright-field light microscopy, SEM, and TEM to examine myogenesis in larval and early juvenile stages of the tusk-shell, Antalis entalis. Myogenesis follows a strict bilaterally symmetrical pattern without special larval muscle systems. The paired cephalic and foot retractors appear synchronously in the early trochophore-like larva. In late larvae, both retractors form additional fibers that project into the anterior region, thus enabling retraction of the larval prototroch. These fibers, together with the prototroch, disappear during metamorphosis. The anlagen of the putative foot musculature, mantle retractors, and buccal musculature are formed in late larval stages. The cephalic captacula and their musculature are of postmetamorphic origin. Development of the foot musculature is dramatically pronounced after metamorphosis and results in a dense muscular grid consisting of outer ring, intermediate diagonal, and inner longitudinal fibers. This is in accordance with the proposed function of the foot as a burrowing organ based on muscle-antagonistic activity. The existence of a distinct pair of cephalic retractors, which is also found in basal gastropods and cephalopods, as well as new data on scaphopod shell morphogenesis and recent cladistic analyses, indicate that the Scaphopoda may be more closely related to the Gastropoda and Cephalopoda than to the Bivalvia.  相似文献   

17.
HENNING BLOM 《Palaeontology》2012,55(3):641-652
Abstract: A new possible stem gnathostome, Kerreralepis carinata gen. et sp. nov., is described on the basis of a single specimen from the Lower Devonian of the island of Kerrera in the Inner Hebrides, Scotland. It is recognized as an anaspid by the chevron‐like arranged rod‐shaped scales on the trunk, gill openings extending behind the orbits in a slanting row and a series of median dorsal ridge scales. This specimen also has a series of median ventral plates, indicating the presence of a preanal fin‐fold, which in turn has consequences for interpretations of other problematic stem gnathostomes and their phylogenetic context. A cladistic analysis supports a monophyletic Anaspida including the scale‐covered birkeniids but excluding Lasanius as well as anaspid‐like forms such as Euphanerops and Jamoytius. The establishment of a new genus and species increases the diversity of anaspids and allows for a more detailed study of anaspid interrelationships. An ingroup analysis using Lasanius as an outgroup resolves Birkenia as a rather basal anaspid, sister to all other anaspids, alternatively sister to a clade represented by the taxa from Ringerike, Norway, and the closely associated taxon from Saaremaa Island, Estonia. These topologies agree rather well with the present fossil record of anaspids.  相似文献   

18.
19.
20.
Schneeberg, K. and Beutel, R.G. 2011. The adult head structures of Tipulomorpha (Diptera, Insecta) and their phylogenetic implications. —Acta Zoologica (Stockholm) 92 : 316–343. Head structures of adults of Tipula paludosa, Limonia sp. and Trichocera saltator were examined and described. The results are compared with conditions found in other dipterans and other antliophoran groups, notably Nannochoristidae. Several potential synapomorphies of a dipteran–nannomecopteran–siphonapteran clade are present in Tipuloidea and Trichocera, the labro‐epipharyngeal food channel, the loss of the galea and the postpharyngeal pumping apparatus. The sensorial field of the maxillary palpomere 3, a potential dipteran–nannomecopteran synapomorphy, is also present but modified. The presence of M. clypeolabralis, labellae and mandibular stylets are groundplan apomorphies of Diptera, with secondary loss of the mandibles in Tipuloidea, Trichoceridae and many other groups. Tipuloidea is supported by the origin of M. tentorioscapalis anterior on the head capsule, the reduction of M. frontobuccalis anterior and the loss of the ocelli. The reduced tentorium, the origin of two further antennal muscles on the head capsule, the maxillary sensorial field with sensilla in individual pits, the lacking dorsal prelabial concavity and the unpaired salivary channel entering the head are apomorphies of Tipulidae. Closer affinities of Tipulidae and Cylindrotomidae are suggested by pseudotracheae of the advanced type, which have evolved independently in this lineage. The results do neither support a basal placement of Tipuloidea nor close affinities with Brachycera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号