首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cell lines were established which produce replication-defective ecotropic and amphotropic host range recombinant retroviruses containing the cDNA for mouse cytochrome P3-450 as well as the bacterial Neo gene for G418 resistance. The G418-resistant clones derived from virus-infected cultures were analyzed for the expression, subcellular localization, and catalytic activities of the cytochrome P3-450. Southern blot analysis of the genomic DNAs indicates that the viral DNA was stably integrated into the cellular DNA. Western blot analysis of the proteins showed that the size of the constitutively expressed product was Mr 54,000, indistinguishable from the cytochrome P3-450 found in mouse liver microsomes. Spectral characterization of the P3-450 proteins indicates that the newly synthesized apoprotein incorporated heme and integrated into the microsomes. Enzymatic analysis of the cell homogenates in vitro and of the dividing cells in situ showed very high acetanilide hydroxylase activity and very low aryl hydrocarbon hydroxylase activity, a diagnostic feature of the cytochrome P3-450. The precise transmission of the recombinant retroviral sequences into the target cells and the exceptional fidelity of expression of the enzyme in cells will allow the analysis of an increasing number of cloned genes of cytochrome P-450s by defining the individual enzyme specificities, their physiological role in cells, and consequences of their functional expression, such as in toxicity, mutagenesis, and carcinogenesis.  相似文献   

4.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

5.
Incubation of valproic acid with rat liver microsomes led to the formation of 3-, 4- and 5-hydroxy-valproic acid. The latter two metabolites, which have been characterized previously from in vivo studies, may be regarded as products of fatty acid ω-1 and ω hydroxylation, respectively. 3-Hydroxy-valproic acid, however, had been thought to derive from the β-oxidation pathway in mitochondria. Conversion of valproic acid to all three metabolites in microsomes required NADPH (NADH was less effective), utilized molecular oxygen, was suppressed by inhibitors of cytochrome P-450 and was stimulated (notably at C-3 and C-4) by phenobarbital pretreatment of the rats. It is concluded that rat liver microsomal cytochrome P-450 catalyzes ω-2 hydroxylation of valproic acid, a reaction not detected previously with fatty acids in mammalian systems, and that the product, 3-hydroxyvalproic acid, should not be used to assess in vivo metabolism of valproate via the β-oxidation pathway.  相似文献   

6.
Cytochrome P450-dependent oxidation of arachidonic acid was studied in liver microsomes from normal fed, protein-energy malnourished, and refed rats. The overall rate of arachidonic acid oxidation was very similar in microsomes from the three groups, but microsomes from malnourished rats showed a higher turnover rate than microsomes from normal fed and refed rats. The regiospecificity of cytochrome P450 oxidation of arachidonic acid was drastically altered by the animal nutritional status. Thus, protein-energy malnutrition results in a clear stimulation of total omega and omega-1 hydroxylation, concomitant with a marked decrease in olefin epoxidation and allyllic oxidations. These changes, as well as the documented biological activity of some of the cytochrome P450 arachidonate metabolites, suggest that protein-energy deficiency might help to select P450 isozymes which are probably involved in key monooxygenation reactions of physiological substrates.  相似文献   

7.
8.
A method for measuring the content of two groups of microsomal cytochrome P-450 isozymes--cytochromes P-450W and P-450L--with the active sites directed into the water phase and membrane lipids, respectively, has been developed. The method is based on the ability of the xanthine oxidase-menadione complex to reduce microsomal cytochromes b5 and P-450 under anaerobic conditions by transferring electrons to hemoproteins with the active sites directed into the water phase. Cytochrome b5 is completely reduced (to the dithionite level) and cytochrome P-450 is reduced partially (only a group of cytochromes P-450W). The amount of cytochromes P-450L is estimated using the difference between the total content of cytochrome P-450 reduced by sodium dithionite and the content of cytochromes P-450W. The possibility of controlling the ratio of these two isozyme groups in cytochrome P-450 in vivo in membranes of the endoplasmic reticulum by pretreatment of animals with a variety of chemicals has been demonstrated. The ratio of cytochromes P-450W and P-450L has been shown to decrease two-fold 18 days after three injections of phenobarbital into mice. Carbon tetrachloride and cyclophosphamide also decrease this ratio in vivo.  相似文献   

9.
Determination of the heme and protein portions of phenobarbital (PB)-inducible and 3-methylcholanthrene inducible forms of cytochrome P-450, P-450(PB-1), and P-450(MC-1), in the liver microsomes of drug-treated animals indicated the presence of 20-30% of apo-cytochrome P-450 in both cases. Inhibition of protein synthesis by cycloheximide injection to the rats did not significantly inhibit the incorporation of delta-amino[14C]levulinic acid (ALA) into the heme of P-450(PB-1) or P-450(MC-1) in the liver, indicating that the heme incorporation into microsomal cytochrome P-450 is not tightly coupled with the synthesis of the apo-cytochrome. When heme-labeled cytosol prepared from [14C]ALA-injected rats was incubated with non-radioactive microsomes in vitro, a significant amount of labeled heme was incorporated into microsomal P-450(PB-1), whereas the incorporation into P-450(MC-1) was much less. The in vitro transfer of heme from cytosol to microsome-bound cytochrome P-450 was stimulated by the addition of an NADPH-generating system to the incubation mixtures, and inhibited when the microsomes were solubilized with sodium cholate and Emulgen-913. Although the in vitro incubation of heme-labeled microsomes with non-radioactive cytosol resulted in some release of labeled heme from the microsomes, no reversible transfer of heme between cytochrome P-450 molecules bound to separate microsomal vesicles was detected when heme-labeled microsomes were incubated with non-radioactive microsomes in the presence and absence of cytosol.  相似文献   

10.
To better understand ligand-induced structural transitions in cytochrome P450 2B4, protein-ligand interactions were investigated using a bulky inhibitor. Bifonazole, a broad spectrum antifungal agent, inhibits monooxygenase activity and induces a type II binding spectrum in 2B4dH(H226Y), a modified enzyme previously crystallized in the presence of 4-(4-chlorophenyl)imidazole (CPI). Isothermal titration calorimetry and tryptophan fluorescence quenching indicate no significant burial of protein apolar surface nor altered accessibility of Trp-121 upon bifonazole binding, in contrast to recent results with CPI. A 2.3 A crystal structure of 2B4-bifonazole reveals a novel open conformation with ligand bound in the active site, which is significantly different from either the U-shaped cleft of ligand-free 2B4 or the small active site pocket of 2B4-CPI. The O-shaped active site cleft of 2B4-bifonazole is widely open in the middle but narrow at the top. A bifonazole molecule occupies the bottom of the active site cleft, where helix I is bent approximately 15 degrees to accommodate the bulky ligand. The structure also defines unanticipated interactions between helix C residues and bifonazole, suggesting an important role of helix C in azole recognition by mammalian P450s. Comparison of the ligand-free 2B4 structure, the 2B4-CPI structure, and the 2B4-bifonazole structure identifies structurally plastic regions that undergo correlated conformational changes in response to ligand binding. The most plastic regions are putative membrane-binding motifs involved in substrate access or substrate binding. The results allow us to model the membrane-associated state of P450 and provide insight into how lipophilic substrates access the buried active site.  相似文献   

11.
In the absence of NADPH, the addition of an arachidonic acid hydroperoxide, 15-hydroperoxyeicosa-5,8,11,13-tetraenoic acid, to liver microsomes, prepared from phenobarbital-treated rats, resulted in the formation of two major metabolites and several minor products, some of which have been purified by reverse-phase high-performance liquid chromatography. We propose the structures of the two major products to be 13-hydroxy-14,15-epoxyeicosa-5,8,11-trienoic acid and 11,14,15-trihydroxyeicosa-5,8,12-trienoic acid based on spectral characteristics and mass spectral analysis of derivatives of the compounds. A potential heterolytic cleavage product, 15-hydroxyeicosa-5,8,11,13-tetraenoic acid, was not a product of the reaction. Ferric cytochrome P-450 catalyzed the formation of these products as shown by the inability of boiled microsomes to support the reaction, the inhibition of epoxyhydroxy and trihydroxy fatty acid formation by imidazole derivatives which bind tightly to the ferric heme iron of cytochrome P-450, and the inability of carbon monoxide (which binds to ferrous P-450) and free iron chelators (EDTA and diethylenetriaminepentaacetic acid) to inhibit product formation. These results show that liver microsomal cytochrome P-450, in addition to its role in the NADPH-dependent metabolism of arachidonic acid, can utilize a hydroperoxide to produce an interesting series of potentially important arachidonic acid metabolites.  相似文献   

12.
13.
Fluorescence quenching and energy-transfer studies have been carried out to determine the position of FAD and FMN groups of NADPH-cytochrome P450 reductase and of the heme and substrate groups of cytochrome P450 with respect to the lipid/water interphase. Quenching by iodine of the fluorescence of the flavins of the reductase shows a biphasic pattern, due to the different accessibility of FAD and FMN to the solvent with Stern-Volmer constants of 7.9 x 10(-4) and 2.7 x 10(-3) mM-1, respectively. Both prosthetic groups appear to be buried within the three-dimensional structure of the native reductase, FAD more deeply embedded than FMN and with a relative contribution to the total fluorescence of flavins of 84% (FAD) and 16% (FMN). The lack of significant energy transfer (less than 5%) from FAD+FMN to the rhodamine group of the N-labeled phosphatidylethanolamine incorporated in membranes reconstituted with NADPH-cytochrome P450 reductase and phosphatidylcholine points out that both groups are located at a distance greater than 5 nm from the lipid/water interphase. Steady-state fluorescence intensity and anisotropy data obtained with native and FMN-depleted NADPH-cytochrome P450 reductase show that energy transfer between both prosthetic groups occurs in the native reductase with an efficiency of ca. 31%, consistent with a separation between these groups of 2 nm as suggested earlier by Bastiaens, P. I. H., Bonants, P. J. M., Müller, F., & Visser, A. J. W. G. [(1989) Biochemistry 28, 8416-8425] from time-resolved fluorescence anisotropy measurements.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The temperature dependence and activation energies for the oxidation of ethanol by microsomes from controls and from rats treated with pyrazole was evaluated to determine whether the overall mechanism for ethanol oxidation by microsomes was altered by the pyrazole treatment. Arrhenius plots of the temperature dependence of ethanol oxidation by pyrazole microsomes were linear and exhibited no transition breaks, whereas a slight break was observed at about 20 +/- 2.5 degrees C with control microsomes. Energies of activation (about 15-17 kcal/mol) were identical for the two microsomal preparations. Although transition breaks were noted for the oxidation of substrates such as dimethylnitrosamine and benzphetamine, activation energies for these two substrates were similar for control microsomes and microsomes from the pyrazole-treated rats. The addition of ferric-EDTA to the microsomes increased the rate of ethanol oxidation by a hydroxyl radical (.OH)-dependent pathway. Arrhenius plots of the .OH-dependent oxidation of ethanol by both microsomal preparations were linear with energies of activation (about 7 kcal/mol) that were considerably lower than values found for the P450-dependent pathway. These results suggest that, at least in terms of activation energy, the increase in microsomal ethanol oxidation by pyrazole treatment is not associated with any apparent change in the overall mechanism or rate-limiting step for ethanol oxidation but likely reflects induction of a P450 isozyme with increased activity toward ethanol. The lower activation energy for the .OH-dependent oxidation of ethanol suggests that different steps are rate limiting for oxidation of ethanol by .OH and by P450, which may reflect the different enzyme components of the microsomal electron transfer system involved in these reactions.  相似文献   

15.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

16.
17.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

18.
Antibody-inhibition experiments established that the induction of cytochrome P450c is largely responsible for the marked increase in liver microsomal 7-ethoxyresorufin O-dealkylation in rats treated with 3-methylcholanthrene, whereas the induction of cytochrome P450b and/or P450e is largely responsible for the marked increase in 7-pentoxy- and 7-benzyloxyresorufin O-dealkylation in rats treated with phenobarbital. When reconstituted with NADPH-cytochrome P450 reductase and lipid, purified cytochrome P450c catalyzed the O-dealkylation of 7-ethoxyresorufin at a rate of approximately 30 nmol/nmol P450/min, which far exceeded the rate catalyzed by either purified cytochromes P450b and P450e or microsomal cytochrome P450c. In contrast, purified cytochrome P450b and P450e were poor catalysts of the O-dealkylation of 7-pentoxy- and 7-benzyloxyresorufin. However, purified cytochrome P450b is an excellent catalyst of several other reactions, such as the N-demethylation of benzphetamine, the hydroxylation of testosterone, and the O-dealkylation of 7-ethoxycoumarin. The low rate of 7-pentoxyresorufin O-dealkylation catalyzed by purified cytochrome P450b did not reflect a requirement for cytochrome b5, and could not be ascribed to an artifact of the method used to measure the formation of resourufin. The catalytic activity of purified cytochrome P450b toward 7-pentoxyresorufin was consistently low over a range of substrate and lipid concentrations, and was not stimulated by sodium deoxycholate (which stimulates the N-demethylation of benzphatamine by purified cytochrome P450b). Evidence is presented which indicates that cytochrome P450c catalyzes the O-dealkylation of both the oxidized and reduced forms of 7-ethoxyresorufin, with perhaps a slight preference for the reduced form. In contrast, cytochrome P450b preferentially catalyzes the O-dealkylation of the oxidized form of 7-pentoxyresorufin. Conditions that favored formation of the reduced form of 7-ethoxyresorufin tended to stimulate its O-dealkylation by purified cytochrome P450c, whereas conditions that favored formation of the reduced form of 7-pentoxyresorufin decreased its rate of O-dealkylation by purified cytochrome P450b. Such conditions included a molar excess of NADPH-cytochrome P450 reductase over cytochrome P450, the presence of superoxide dismutase, and the presence of DT-diaphorase (liver cytosol).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Dissociation constants K(d) for cytochrome P450 reductase (reductase) and cytochrome P450 2B4 are measured in the presence of various substrates. Aminopyrine increases the dissociation constant for binding of the two proteins. Furthermore, cytochrome b(5) (b(5)) stimulates metabolism of this substrate and dramatically decreases the substrate-related K(d) values. Experiments are performed to test if the b(5)-mediated stimulation is effected through a conformational change of P450. The effects of a redox-inactive analogue of b(5) (Mn b(5)) on product formation and reaction stoichiometry are determined. Variations in the concentration of Mn b(5) stock solution that have been shown to effect the aggregation state of the protein alter the rate of P450-mediated NADPH oxidation but have no effect on the rate of product formation. Thus, the electron transfer capability of b(5) is necessary for stimulation of metabolism. Furthermore, stopped flow spectrometry measurements of the rate of first electron reduction of the P450 by reductase indicate that the coupling of P450 2B4-mediated metabolism improves, in the presence of Mn b(5), with slower delivery of the first electron of the catalytic cycle by the reductase. These results are consistent with a model involving the regulation of the P450 catalytic cycle by conformational changes of the P450 enzyme. We propose that the conformational change(s) necessary for progression of the catalytic cycle is inhibited when reduced, but not oxidized, reductase is bound to the P450.  相似文献   

20.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号