首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vav2 is a member of the Vav family that serves as a guanine nucleotide exchange factor for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the epidermal growth factor (EGF) receptor; however, the mechanism by which Vav2 is activated in EGF-treated cells is unclear. By the means of an in vitro protein kinase assay, we show here that purified and activated EGF receptor phosphorylates Vav2 exclusively on its N-terminal domain. Furthermore, EGF receptor phosphorylates Vav2 on all three possible phosphorylation sites, Tyr-142, Tyr-159, and Tyr-172. In intact cells we also show that Vav2 associates with the activated EGF receptor in an Src homology 2 domain-dependent manner, with Vav2 Src homology 2 domain binding preferentially to autophosphorylation sites Tyr-992 and Tyr-1148 of the EGF receptor. Treatment of cells with EGF results in stimulation of exchange activity of Vav2 as measured on Rac; however, the intensity of the exchange activity does not show any correlation with the level of Vav2 tyrosine phosphorylation. Introducing a point mutation into the Vav2 pleckstrin homology domain or treatment of cells with the phosphatidylinositol 3-kinase inhibitor LY294002 prior to EGF stimulation inhibits Vav2 exchange activity. Although phosphorylation mutants of Vav2 can readily induce actin rearrangement in COS7 cells, pleckstrin homology domain mutant does not stimulate membrane ruffling. These results suggest that EGF regulates Vav2 activity basically through phosphatidylinositol 3-kinase activation, whereas tyrosine phosphorylation of Vav2 may rather be necessary for mediating protein-protein interactions.  相似文献   

2.
Integrin alpha(v)beta(3)-mediated adhesion of hematopoietic cells to vitronectin results in activation of the Rho GTPases. Mutation of beta(3) tyrosine residue 747, previously shown to disrupt cell adhesion, results in sustained activation of Cdc42 and diminished Rac and Rho activity. We investigated the role of the hematopoietically restricted guanine nucleotide exchange factor Vav1 in alpha(v)beta(3)-mediated adhesion. We find that Vav1, a guanine nucleotide exchange factor for Rac and Rho, associates with alpha(v)beta(3) upon cell adhesion to vitronectin and that this association requires beta(3) tyrosine phosphorylation. Expression of exogenous Vav1 demonstrates that Y160F, but not wild type or the Vav1Y174F mutant, inhibits Rac and Rho activation during alpha(v)beta(3)-mediated cell adhesion to vitronectin. Cells expressing Vav1Y160F exhibit a sustained Cdc42 activation similar to nonphosphorylatable beta(3) mutants. In addition, cytoskeletal reorganization and cell adhesion are severely suppressed in Vav1Y160F-transfected cells, and Vav1Y160F fails to associate with beta(3) integrins. Furthermore, Vav1 itself is selectively phosphorylated upon tyrosine 160 after alpha(v)beta(3)-mediated adhesion, and the association between Vav1 and beta(3) occurs in specific response to adhesion to substrate. These studies describe a phosphorylation-dependent association between beta(3) integrin and Vav1 which is essential for cell progression to a Rho-dominant phenotype during cell adhesion.  相似文献   

3.
UTP stimulates the expression of pro-inflammatory vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells through activation of the P2Y(2) nucleotide receptor P2Y(2)R. Here, we demonstrated that activation of the P2Y(2)R induced rapid tyrosine phosphorylation of vascular endothelial growth factor receptor (VEGFR)-2 in human coronary artery endothelial cells (HCAEC). RNA interference targeting VEGFR-2 or inhibition of VEGFR-2 tyrosine kinase activity abolishes P2Y(2)R-mediated VCAM-1 expression. Furthermore, VEGFR-2 and the P2Y(2)R co-localize upon UTP stimulation. Deletion or mutation of two Src homology-3-binding sites in the C-terminal tail of the P2Y(2)R or inhibition of Src kinase activity abolished the P2Y(2)R-mediated transactivation of VEGFR-2 and subsequently inhibited UTP-induced VCAM-1 expression. Moreover, activation of VEGFR-2 by UTP leads to the phosphorylation of Vav2, a guanine nucleotide exchange factor for Rho family GTPases. Using a binding assay to measure the activity of the small GTPases Rho, we found that stimulation of HCAEC by UTP increased the activity of RhoA and Rac1 (but not Cdc42). Significantly, a dominant negative form of RhoA inhibited P2Y(2)R-mediated VCAM-1 expression, whereas expression of dominant negative forms of Cdc42 and Rac1 had no effect. These data indicate a novel mechanism whereby a nucleotide receptor transactivates a receptor tyrosine kinase to generate an inflammatory response associated with atherosclerosis.  相似文献   

4.
5.
The Rho family of GTPases plays a major role in the organization of the actin cytoskeleton. These G proteins are activated by guanine nucleotide exchange factors that stimulate the exchange of bound GDP for GTP. In their GTP-bound state, these G proteins interact with downstream effectors. Vav2 is an exchange factor for Rho family GTPases. It is a ubiquitously expressed homologue of Vav1, and like Vav1, it has previously been shown to be activated by tyrosine phosphorylation. Because Vav1 becomes tyrosine phosphorylated and activated following integrin engagement in hematopoietic cells, we investigated the tyrosine phosphorylation of Vav2 in response to integrin-mediated adhesion in fibroblasts and epithelial cells. However, no tyrosine phosphorylation of Vav2 was detected in response to integrin engagement. In contrast, treating cells with either epidermal growth factor or platelet-derived growth factor stimulated tyrosine phosphorylation of Vav2. We have examined the effects of overexpressing either wild-type or amino-terminally truncated (constitutively active) forms of Vav2 as fusion proteins with green fluorescent protein. Overexpression of either wild-type or constitutively active Vav2 resulted in prominent membrane ruffles and enhanced stress fibers. These cells revealed elevated rates of cell migration that were inhibited by expression of dominant negative forms of Rac1 and Cdc42. Using a binding assay to measure the activity of Rac1, Cdc42, and RhoA, we found that overexpression of Vav2 resulted in increased activity of each of these G proteins. Expression of a carboxy-terminal fragment of Vav2 decreased the elevation of Rac1 activity induced by epidermal growth factor, consistent with Vav2 mediating activation of Rac1 downstream from growth factor receptors.  相似文献   

6.
Collagen phagocytosis is a crucial alpha2beta1-integrin-dependent process that mediates extracellular matrix remodeling by fibroblasts. We showed previously that after initial contact with collagen, activated Rac1 accelerates collagen phagocytosis but the Rac guanine nucleotide exchange factors (GEFs) that regulate Rac are not defined. We examined here the GEFs that regulate collagen phagocytosis in mouse fibroblasts. Collagen binding enhanced Rac1 activity (5-20 min) but not Cdc42 or RhoA activity. Analysis of collagen bead-associated proteins showed enrichment with Vav2, which correlated temporally with increased Rac1 activity. Knockdown of Vav2 prevented Rac activation, recruitment of Rac1 to collagen bead binding sites, and collagen bead binding, but knockdown of Sos-1 or beta-Pix had no effect on Rac activation or collagen binding. Vav2 was associated with the nucleotide-free Rac1 mutant (G15ARac1) after collagen binding. Collagen bead binding promoted phosphorylation of Vav2, which temporally correlated with Rac1 activation and which required Src kinase activity. Blockage of Src activity prevented collagen bead-induced Rac activation and collagen bead binding. Collectively these data indicate that Vav2 regulates the Rac1 activity associated with the binding step of collagen phagocytosis.  相似文献   

7.
Second-phase insulin release requires the sustained mobilization of insulin granules from internal storage pools to the cell surface for fusion with the plasma membrane. However, the detailed mechanisms underlying this process remain largely unknown. GTP-loading of the small GTPase Cdc42 is the first glucose-specific activation step in the process, although how glucose triggers Cdc42 activation is entirely unknown. In a directed candidate screen for guanine nucleotide exchange factors (GEFs), which directly activate small GTPases, Cool-1/βPix was identified in pancreatic islet beta cells. In support of its role as the beta cell Cdc42 GEF, βPix coimmunoprecipitated with Cdc42 in human islets and MIN6 beta cells in a glucose-dependent manner, peaking just prior to Cdc42 activation. Furthermore, RNAi-mediated βPix reduction by 50% corresponded to full ablation of glucose-induced Cdc42 activation and significant attenuation of basal and glucose-stimulated insulin secretion. Of the two Cdc42 guanine nucleotide dissociation inhibitor (GDI) proteins identified in beta cells, βPix competed selectively with caveolin-1 (Cav-1) but not RhoGDI in coimmunoprecipitation and GST-Cdc42-GDP interaction assays. However, a phospho-deficient Cav-1-Y14F mutant failed to compete with βPix; Cav-1(Tyr14) is an established phosphorylation site for Src kinase. Taken together, these data support a new model, wherein glucose stimulates Cav-1 and induces its dissociation from Cdc42, possibly via Src kinase activation to phosphorylate Cav-1(Tyr14), to promote Cdc42-βPix binding and Cdc42 activation, and to trigger downstream signaling and ultimately sustain insulin release.  相似文献   

8.
Vav2 is a member of the Vav family that serves as guanine nucleotide exchange factors (GEFs) for the Rho family of Ras-related GTPases. Unlike Vav1, whose expression is restricted to cells of hematopoietic origin, Vav2 is broadly expressed. Recently, Vav2 has been identified as a substrate for the EGF receptor. Here, we show that in EGF-treated COS7 cells Vav2 is phosphorylated on tyrosine residues and associates with the EGF receptor. In addition, introducing point mutations into the SH2 domain of green fluorescens protein (GFP)-Vav2 fusion protein leads to the loss of Vav2 tyrosine phosphorylation in response to EGF. To investigate further the mechanism of Vav2 phosphorylation, N-terminal (NT) domain of Vav2 was transiently expressed in COS7 cells as GFP fusion protein. Whereas the NT domain of Vav2 is a preferred substrate for the activated EGF receptor in vitro, we could not detect tyrosine phosphorylation of the GFP-NT construct in EGF-treated cells. However, when the SH2 domain of Vav2 was fused to its NT domain, NT domain proved to be a substrate for the EGF receptor in vivo. These data suggest that membrane-targeting of Vav2 through its SH2 domain is an important event in the phosphorylation and activation of Vav2 in response to EGF.  相似文献   

9.
Epidermal growth factor (EGF) induces paxillin tyrosine dephosphorylation and Src activation, but the signaling pathways that mediate these responses were largely undefined. We found that Gab1, a docking protein for the SHP2 protein-tyrosine phosphatase in EGF-stimulated cells, was associated with paxillin. SHP2 dephosphorylated paxillin and caused dissociation of Csk, a negative regulator of Src, from paxillin but had no effect on paxillin-Src association. A lower level of Src Tyr-530 phosphorylation was detected in paxillin-associated Src in EGF-stimulated cells. Expression of an SHP2 binding defective mutant of Gab1 (Gab1FF) or a catalytically inactive mutant of SHP2 (SHP2DN) prevented paxillin tyrosine dephosphorylation and Src activation induced by EGF. Importantly, Gab1FF blocked paxillin-SHP2 complex formation, Src Tyr-530 dephosphorylation, Erk activation, and cell migration induced by EGF. Inhibition of Src tyrosine kinase activity abrogated EGF-stimulated Erk activation and cell migration. Together, these results reveal that Gab1 recruits SHP2 to dephosphorylate paxillin, leading to dissociation of Csk from the paxillin-Src complex and Src activation and that Src is an SHP2 effector involved in EGF-stimulated Erk activation and cell migration.  相似文献   

10.
Although Vav can act as a guanine nucleotide exchange factor for RhoA, Rac1, and Cdc42, its transforming activity has been ascribed primarily to its ability to activate Rac1. However, because activated Vav, but not Rac-specific guanine nucleotide exchange factors, exhibits very potent focus-forming transforming activity when assayed in NIH 3T3 cells, Vav transforming activity must also involve activation of Rac-independent pathways. In this study, we determined the involvement of other Rho family proteins and their signaling pathways in Vav transformation. We found that RhoA, Rac1, and Cdc42 functions are all required for Vav transforming activity. Furthermore, we determined that Vav activation of nuclear factor-kappaB and the Jun NH2-terminal kinase mitogen-activated protein kinase (MAPK) is necessary for full transformation by Vav, whereas p38 MAPK does not seem to play an important role. We also determined that Vav is a weak activator of Elk-1 via a Ras- and MAPK/extracellular signal-regulated kinase kinase-dependent pathway, and this activity was essential for Vav transformation. Thus, we conclude that full Vav transforming activation is mediated by the activation of multiple small GTPases and their subsequent activation of signaling pathways that regulate changes in gene expression. Because Vav is activated by the epidermal growth factor receptor and other tyrosine kinases involved in cancer development, defining the role of aberrant Vav signaling may identify activities of receptor tyrosine kinases important for human oncogenesis.  相似文献   

11.
Cdc42 cycling through GTP/GDP states is critical for its function in the second/granule mobilization phase of insulin granule exocytosis in pancreatic islet beta cells, although the identities of the Cdc42 cycling proteins involved remain incomplete. Using a tandem affinity purification-based mass spectrometry screen for Cdc42 cycling factors in beta cells, RhoGDI was identified. RNA interference-mediated depletion of RhoGDI from isolated islets selectively amplified the second phase of insulin release, consistent with the role of RhoGDI as a Cdc42 cycling factor. Replenishment of RhoGDI to RNA interference-depleted cells normalized secretion, confirming the action of RhoGDI to be that of a negative regulator of Cdc42 activation. Given that RhoGDI also regulates Rac1 activation in beta cells, and that Rac1 activation occurs in a Cdc42-dependent manner, the question as to how the beta cell utilized RhoGDI for differential Cdc42 and Rac1 cycling was explored. Co-immunoprecipitation was used to determine that RhoGDI-Cdc42 complexes dissociated upon stimulation of beta cells with glucose for 3 min, correlating with the timing of glucose-induced Cdc42 activation and the onset of RhoGDI tyrosine phosphorylation. Glucose-induced disruption of RhoGDI-Rac1 complexes occurred subsequent to this, coincident with Rac1 activation, which followed the onset of RhoGDI serine phosphorylation. RhoGDI-Cdc42 complex dissociation was blocked by mutation of RhoGDI residue Tyr-156, whereas RhoGDI-Rac1 dissociation was blocked by RhoGDI mutations Y156F and S101A/S174A. Finally, expression of a triple Y156F/S101A/S174A-RhoGDI mutant specifically inhibited only the second/granule mobilization phase of glucose-stimulated insulin secretion, overall supporting the integration of RhoGDI into the activation cycling mechanism of glucose-responsive small GTPases.  相似文献   

12.
The linker for activation of T-cells (LAT) is a palmitoylated integral membrane adaptor protein that resides in lipid membrane rafts and contains nine consensus putative tyrosine phosphorylation sites, several of which have been shown to serve as SH2 binding sites. Upon T-cell antigen receptor (TCR/CD3) engagement, LAT is phosphorylated by protein tyrosine kinases (PTK) and binds to the adaptors Gads and Grb2, as well as to phospholipase Cgamma1 (PLCgamma1), thereby facilitating the recruitment of key signal transduction components to drive T-cell activation. The LAT tyrosine residues Y(132), Y(171), Y(191), and Y(226) have been shown previously to be critical for binding to Gads, Grb2, and PLCgamma1. In this report, we show by generation of LAT truncation mutants that the Syk-family kinase ZAP-70 and the Tec-family kinase Itk favor phosphorylation of carboxy-terminal tyrosines in LAT. By direct binding studies using purified recombinant proteins or phosphopeptides and by mutagenesis of individual tyrosines in LAT to phenylalanine residues, we demonstrate that Y(171) and potentially Y(226) are docking sites for the Vav guanine nucleotide exchange factor. Further, overexpression of a kinase-deficient mutant of Itk in T-cells reduced both the tyrosine phosphorylation of endogenous LAT and the recruitment of Vav to LAT complexes. These data indicate that kinases from distinct PTK families are likely responsible for LAT phosphorylation following T-cell activation and that Itk kinase activity promotes recruitment of Vav to LAT.  相似文献   

13.
Vav1 is a 95-kDa member of the Dbl family of guanine exchange factors and a prominent hemopoietic cell-specific protein tyrosine kinase substrate, the involvement of which in cytoskeletal rearrangements has been linked to its ability to activate Rho family small GTPases. Beta1 integrin ligation by fibronectin induced Vav1 phosphorylation in peripheral blood lymphocytes and in two different T cell lines. Vav1 overexpression led to massive T cell spreading on beta1 integrin ligands, and, conversely, two dominant negative mutants blocked integrin-induced spreading. Vav1 and beta1 integrin ligation synergistically activated Pak, but not Rac, Cdc42, or c-Jun N-terminal kinase. In addition, Vav1 cooperated with constitutively active V12Rac mutant, but not with V12Cdc42, to induce T cell spreading after integrin occupancy. More importantly, a Vav1 mutant that lacked guanine exchange factor activity still cooperated with V12Rac. In contrast, a point mutation in the SH2 domain of Vav1 abolished this synergistic effect. Therefore, our results suggest a new regulatory effect of Vav1 in T cell spreading, which is independent of its guanine exchange factor activity.  相似文献   

14.
We previously showed that p21-activated kinase 2 (PAK2), a major PAK isoform expressed in PC12 cells, mediates neurite outgrowth via Rac1 GTPase. RhoGDI1 forms a complex with Rac1, resulting in its inhibition. Rac1 activation requires dissociation from RhoGDI1. Here, we show that PAK2 mediates basic fibroblast growth factor (bFGF)-stimulated neurite outgrowth via phosphorylation of RhoGDI1. RhoGDI1 was shown to be associated with PAK2, with phosphorylation of Ser34 and Ser101 by active PAK2 evident in vitro and in vivo. A RhoGDI1 phosphomimetic mutant (S34E/S101E) was dissociated from Rac1/Cdc42, whereas the wild-type or a nonphosphorylatable mutant (S34A/S101A) formed a tight complex. Consistent with this, PC12 cells expressing the phosphomimetic mutant displayed Rac1/Cdc42 activation in response to bFGF stimulation. Neurite outgrowth was also enhanced in PC12 cells expressing the phosphomimetic mutant. These results suggest that PAK2-mediated RhoGDI1 phosphorylation stimulates dissociation of RhoGDI1-Rac1/Cdc42 complex accompanied by relief of inhibitory effect on Rac1/Cdc42, which promotes neuronal differentiation.  相似文献   

15.
16.
The E3 ubiquitin ligase Casitas B lymphoma protein (Cbl) controls the ubiquitin-dependent degradation of EGF receptor (EGFR), but its role in regulating downstream signaling elements with which it associates and its impact on biological outcomes of EGFR signaling are less clear. Here, we demonstrate that stimulation of EGFR on human mammary epithelial cells disrupts adherens junctions (AJs) through Vav2 and Rac1/Cdc42 activation. In EGF-stimulated cells, Cbl regulates the levels of phosphorylated Vav2 thereby attenuating Rac1/Cdc42 activity. Knockdown of Cbl and Cbl-b enhanced the EGF-induced disruption of AJs and cell motility. Overexpression of constitutively active Vav2 activated Rac1/Cdc42 and reorganized junctional actin cytoskeleton; these effects were suppressed by WT Cbl and enhanced by a ubiquitin ligase-deficient Cbl mutant. Cbl forms a complex with phospho-EGFR and phospho-Vav2 and facilitates phospho-Vav2 ubiquitinylation. Cbl can also interact with Vav2 directly in a Cbl Tyr-700-dependent manner. A ubiquitin ligase-deficient Cbl mutant enhanced the morphological transformation of mammary epithelial cells induced by constitutively active Vav2; this effect requires an intact Cbl Tyr-700. These results indicate that Cbl ubiquitin ligase plays a critical role in the maintenance of AJs and suppression of cell migration through down-regulation of EGFR-Vav2 signaling.  相似文献   

17.
The tyrosine kinase ACK1 phosphorylates and activates the guanine nucleotide exchange factor Dbl, which in turn directs the Rho family GTP-binding proteins. However, the regulatory mechanism of ACK1/Dbl signaling in response to extracellular stimuli remains poorly understood. Here we describe that epidermal growth factor stimulates the ACK1/Dbl pathway, leading to actin cytoskeletal rearrangements. The role of the two ACK1-binding proteins Cdc42 and Grb2 was assessed by overexpression of the Cdc42/Rac interactive binding domain and a dominant-negative Grb2 mutant, respectively. Specific inhibition of the interaction of ACK1 with Cdc42 or Grb2 by the use of these constructs diminished tyrosine phosphorylation of both ACK1 and Dbl in response to EGF. Therefore, the activation of ACK1 and subsequent downstream signaling require both Cdc42-dependent and Grb2-dependent processes within the cell. In addition, we show that EGF transiently induces formation of the focal complex and stress fibers when ACK1 was ectopically expressed. The induction of these structures was totally sensitive to the action of botulinum toxin C from Clostridium botulinum, suggesting a pivotal role of Rho. These results provide evidence that ACK1 acts as a mediator of EGF signals to Rho family GTP-binding proteins through phosphorylation and activation of GEFs such as Dbl.  相似文献   

18.

Background

Vav proteins are guanine nucleotide exchange factors (GEF) for Rho family GTPases and are activated following engagement of membrane receptors. Overexpression of Vav proteins enhances lamellipodium and ruffle formation, migration, and cell spreading, and augments activation of many downstream signaling proteins like Rac, ERK and Akt. Vav proteins are composed of multiple structural domains that mediate their GEF function and binding interactions with many cellular proteins. In this report we examine the mechanisms responsible for stimulation of cell migration by an activated variant of Vav1 and identify the domains of Vav1 required for this activity.

Results

We found that expression of an active form of Vav1, Vav1Y3F, in MCF-10A mammary epithelial cells increases cell migration in the absence or presence of EGF. Vav1Y3F was also able to drive Rac1 activation and PAK and ERK phosphorylation in MCF-10A cells in the absence of EGF stimulation. Mutations in the Dbl homology, pleckstrin homology, or cysteine-rich domains of Vav1Y3F abolished Rac1 or ERK activation in the absence of EGF and blocked the migration-promoting activity of Vav1Y3F. In contrast, mutations in the SH2 and C-SH3 domains did not affect Rac activation by Vav1Y3F, but reduced the ability of Vav1Y3F to induce EGF-independent migration and constitutive ERK phosphorylation. EGF-independent migration of MCF-10A cells expressing Vav1Y3F was abolished by treatment of cells with an antibody that prevents ligand binding to the EGF receptor. In addition, conditioned media collected from Vav1Y3F expressing cells stimulated migration of parental MCF-10A cells. Lastly, treatment of cells with the EGF receptor inhibitory antibody blocked the Vav1Y3F-induced, EGF-independent stimulation of ERK phosphorylation, but had no effect on Rac1 activation or PAK phosphorylation.

Conclusion

Our results indicate that increased migration of active Vav1 expressing cells is dependent on Vav1 GEF activity and secretion of an EGF receptor ligand. In addition, activation of ERK downstream of Vav1 is dependent on autocrine EGF receptor stimulation while active Vav1 can stimulate Rac1 and PAK activation independent of ligand binding to the EGF receptor. Thus, stimulation of migration by activated Vav1 involves both EGF receptor-dependent and independent activities induced through the Rho GEF domain of Vav1.  相似文献   

19.
Nectins are Ca2+-independent immunoglobulin-like cell-cell adhesion molecules that form homo- and hetero-trans-dimers (trans-interactions). Nectins first form cell-cell contact and then recruit cadherins to the nectin-based cell-cell contact sites to form adherens junctions cooperatively with cadherins. In addition, the trans-interactions of nectins induce the activation of Cdc42 and Rac small G proteins, which enhances the formation of adherens junctions by forming filopodia and lamellipodia, respectively. The trans-interactions of nectins first recruit and activate c-Src at the nectin-based cell-cell contact sites. c-Src then phosphorylates and activates FRG, a Cdc42-GDP/GTP exchange factor (GEF) for Cdc42. The activation of both c-Src and Cdc42 by FRG is necessary for the activation of Rac, but the Rac-GEF responsible for this activation of Rac remains unknown. We showed here that the nectin-induced activation of Rac was inhibited by a dominant negative mutant of Vav2, a Rac-GEF. Nectins recruited and tyrosine-phosphorylated Vav2 through c-Src at the nectin-based cell-cell contact sites, whereas Cdc42 was not necessary for the nectin-induced recruitment of Vav2 or the nectin-induced, c-Src-mediated tyrosine phosphorylation of Vav2. Cdc42 activated through c-Src then enhanced the GEF activity of tyrosine-phosphorylated Vav2 on Rac1. These results indicate that Vav2 is a GEF responsible for the nectin-induced, c-Src-, and Cdc42-mediated activation of Rac.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号