首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Cultured A6 epithelial cells from toad kidney form confluent monolayers with tight junctions separating the apical and basolateral membranes. These two membrane domains have distinct compositions and functions. Thus, sodium is actively transported across the epithelia from the apical to basolateral surface via amiloride-inhibitable sodium channels located in the apical membrane. Sodium transport is stimulated by vasopressin, cholera toxin, and 8-bromo-cAMP applied to the basolateral surface where the receptors, adenylate cyclase, and Na+/K+-ATPase are located. In a previous study (Spiegel, S., Blumenthal, R., Fishman, P.H., and Handler, J.S. (1985) Biochim. Biophys. Acta 821, 310-318), we demonstrated that exogenous gangliosides inserted into the apical membrane of A6 epithelia do not redistribute to the basolateral membrane. With the ability to vary selectively the ganglioside composition of the apical membrane, we examined the effects of gangliosides on sodium transport in A6 epithelia. When the apical surface of A6 epithelia were exposed to exogenous gangliosides, sodium transport in response to vasopressin, cholera toxin, and 8-bromo-cAMP was enhanced compared to epithelia not exposed to gangliosides. The effect was observed with bovine brain gangliosides, NeuAc alpha 2----3Gal beta 1----3GalNAc beta 1----4[NeuAc alpha 2----3]Gal beta 1----4Glc beta 1----Cer (GD1a) and Gal beta-1----3GalNAc beta 1----4[NeuAc alpha 2----3]Gal beta 1----4Glc beta 1----Cer (GM1), but not with the less complex ganglioside, Neu-Ac alpha 2----3Gal beta 1----4Glc beta 1----Cer (GM3). We examined A6 cells for endogenous gangliosides and found that, whereas GM3 was a major ganglioside, only trace amounts of GM1 and GD1a were present. Based on cell surface and metabolic labeling studies, these gangliosides were synthesized by the cells and were present on the apical as well as the basolateral surface. Bacterial sialidase, which hydrolyzes more complex gangliosides to GM1, was used to modify the endogenous gangliosides on the apical surface; after sialidase treatment, the epithelia were more responsive to vasopressin, cholera toxin, and 8-bromo-cAMP. Thus, gangliosides may be modulators of sodium channels present in the apical membrane of epithelial cells.  相似文献   

5.
6.
The electrophysiological properties of the dorsal and ventral canine lingual epithelium are studied in vitro. The dorsal epithelium contains a special ion transport system activated by mucosal solutions hyperosmotic in NaCl or LiCl. Hyperosmotic KCl is significantly less effective as an activator of this system. The lingual frenulum does not contain the transport system. In the dorsal surface it is characterized by a rapid increase in inward current and can be quantitated as a second component in the time course of either the open-circuit potential or short-circuit current when the mucosal solution is hyperosmotic in NaCl or LiCl. The increased inward current (hyperosmotic response) can be eliminated by amiloride (10(-4) M). The specific location of this transport system in the dorsal surface and the fact that it operates over the concentration range characteristic of mammalian salt taste suggests a possible link to gustatory transduction. This possibility is tested by recording neural responses in the rat to NaCl and KCl over a concentration range including the hyperosmotic. We demonstrate that amiloride specifically blocks the response to NaCl over the hyperosmotic range while affecting the KCl response significantly less. The results suggest that gustatory transduction for NaCl is mediated by Na entry into the taste cells via the same amiloride-sensitive pathway responsible for the hyperosmotic response in vitro. Further studies of the in vitro system give evidence for paracellular as well as transcellular current paths. The transmural current-voltage relations are linear under both symmetrical and asymmetrical conditions. After ouabain treatment under symmetrical conditions, the short-circuit current decays to zero. The increase in resistance, though significant, is small, which suggests a sizeable shunt pathway for current. Flux measurements show that sodium is absorbed under symmetrical conditions. Mucosal solutions hyperosmotic in various sugars also induce an amiloride-sensitive inward current. In summary, this work provides evidence that the sodium taste receptor is most probably a sodium transport system, specifically adapted to the dorsal surface of the tongue. The transport paradigm of gustation also suggests a simple model for electric taste and possible mechanisms for sweet taste.  相似文献   

7.
8.
9.
10.
11.
Incorporation of the saxitoxin receptor of the sodium channel solubilized with Triton X-100 and purified 250-fold from rat brain into phosphatidylcholine vesicles is described. Fifty to 80% of the saxitoxin receptor sites are recovered in the reconstituted vesicles (KD = 3 nM). Unlike the detergent-solubilized saxitoxin receptor, the reconstituted saxitoxin binding activity is stable to incubation at 36 degrees C. Approximately 75% of the reconstituted saxitoxin receptor sites are externally oriented and 25% are inside-out. The initial rate of 22Na+ uptake into reconstituted vesicles is increased up to 3- to 4-fold by veratridine with a K0.5 of 11 microM. Seventy per cent of this increase is blocked by external tetrodotoxin (TTX) with a Ki of 10 nM. All of the veratridine-stimulated 22Na+ uptake is blocked when TTX is present on both sides of the vesicle membrane, or when tetracaine is added to the external medium. The apparent binding constants for veratridine, saxitoxin, and TTX are essentially identical to those in intact rat brain synaptosomes. The results demonstrate reconstitution of sodium transport, as well as neurotoxin binding and action, from substantially purified sodium channel preparations.  相似文献   

12.
Summary The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with -MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla.From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

13.
Summary Cationic ferritin was used as a marker to reveal the processes of endocytosis and intracellular transport in bronchiolar and alveolar epithelia. The marker was injected into the lung via the trachea, and ultrastructural observation of the distribution of ferritin particles in bronchiolar and alveolar epithelial cells was carried out at intervals of 5, 15, 30 and 60 min after the injection. The luminal surface of the airway and the alveolar epithelium showed diffuse labeling with cationic ferritin. In general, ferritin particles were observed in vesicles and vacuoles of the bronchiolar and alveolar epithelial cells within 5 min of injection; they appeared in multivesicular bodies within 15 min. Multivesicular bodies and secondary lysosomes containing ferritin particles, some of which showed a positive reaction for acid phosphatase, were seen in the basal cytoplasm within 30 min; ferritin particles appeared in the basal lamina below the Clara cells, ciliated cells and type 2 alveolar cells within 30 min. Ferritin particles were seen in ovoid granules of some Clara cells and in lamellar inclusion bodies of many type 2 alveolar cells. Brush cells and type 1 alveolar cells took up only a small quantity of ferritin particles.  相似文献   

14.
Exposure to D-allose has been demonstrated to lead to decreased 2-deoxy-D-glucose (2-DG) and 3-0-methyl-D-glucose transport in the V79 Chinese hamster lung fibroblast cell line. The effect of D-allose 1) was maximal after 4 hours exposure to the cells; 2) was optimal between 2.77 and 5.55 mM D-allose; and 3) led to a decreased Vmax for 2-DG transport with no change in the transport Km value. The decrease in 2-DG transport induced by D-allose was reversible and the reversal was differentially affected by cycloheximide, being blocked by a low concentration of cycloheximide (0.05 micrograms/ml) but not a high concentration of the inhibitor (5 micrograms/ml). D-allose did not competitively inhibit the transport of 2-DG while D-glucose under similar conditions yielded a Kl for 2-DG transport inhibition of 1.7 mM. Additionally, D-allose did not affect the phosphorylation of 2-DG by hexokinase in cell-free cytosol. The data indicate that D-allose has significant lowering effects on sugar transport activity. Additionally, while the sugar itself may be the active component in sugar transport regulation, the effect is not blocked by inhibition of protein synthesis but the synthesis of a regulatory protein(s) may be involved in the return of sugar transport following D-allose removal.  相似文献   

15.
Summary Thel-alanine-dependent transport of sodium ions across the plasma membrane of rat-liver parenchymal cells was studied using isolated plasma membrane vesicles. Sodium uptake is stimulated specifically by thel-isomer of alanine and other amino acids, whose transport is sodium-dependent in rat-liver plasma membrane vesicles. Thel-alanine-dependent sodium flux across the membrane is inhibited by an excess of Li+ ions, but not by K+ or choline ions. Sodium transport is sensitive to-SH reagents and ionophores, and is an electrogenic process: a membrane potential (negative inside) can enhancel-alanine-dependent sodium accumulation. The data presented provide further evidence for a sodium-alanine cotransport mechanism.  相似文献   

16.
17.
New evidence for active sodium transport from fluid-filled rat lungs   总被引:4,自引:0,他引:4  
The hypothesis that fluid reabsorption from the air spaces is mediated at least in part by active transport of Na+ was investigated in six sets of experiments conducted in isolated fluid-filled rat lungs. Fluid reabsorption was monitored by following the changes in the air space concentration of labeled albumin. We found that incorporation of bicarbonate rather than a nonvolatile buffer (N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid) in the air space solution more than doubled the rate of fluid reabsorption. Addition of 10(-4) M amiloride to the air space solution reduced the rate of fluid reabsorption over a 2-h experiment from 1.2 +/- 0.1 to 0.7 +/- 0.1 ml and decreased reabsorption of both labeled and unlabeled Na+ from the air spaces. To show that Na+ could be reabsorbed from the air spaces even if the concentrations of Na+ in the perfusate increased above those in the air space, mannitol (150 mM) was added to the perfusate and air space solutions and the concentrations of Na+ and Cl- were reduced to 90 and 60 mM, respectively. Mannitol diffuses across the pulmonary epithelium very slowly, and it osmotically restrained the movement of water out of the air spaces. Na+ concentrations in the perfusate increased by 10 +/- 2 mM, but concentrations in the air space remained unchanged. Despite an increasingly unfavorable concentration gradient for Na+, 0.2 mmol Na+ and 0.6 ml water were reabsorbed from the air spaces in 2 h. Ouabain (10(-4) M) did not appear to slow fluid reabsorption in the presence of mannitol, but it reduced K+ secretion into the air spaces and increased K+ appearance in the perfusate in a manner consistent with inhibition of Na+-K+-adenosinetriphosphatase at the basolateral surface of the epithelial cells. Fluid reabsorption was not altered when the lungs were exposed to a hypotonic solution (185 mM), but secretion of K+ into the air spaces was accelerated and K+ was lost from the perfusate. These experiments are consistent with active Na+ transport from the air spaces.  相似文献   

18.
O Nada  K Hirata 《Histochemistry》1976,50(2):111-117
The foliate, vallate and fungiform papillae of the rabbit's tongue were studied fluorescence-histochemically under normal and experimental conditions. In normal animals a yellow fluorescence suggesting the presence of a serotonin-like monoamine was demonstrated only in taste bud cells of the foliate papilla, though its intensity was very weak. The fluorescence disappeared completely following reserpine treatment, while it was significantly enhanced by the treatment with nialamide. The fluorescence of taste bud cells could be clearly distinguished from that of catecholamines by the treatment with alpha-MMT followed by nialamide. When 5-HTP, 5-HT and 5,6-DHT were administered separately, each of these drugs was selectively taken up in taste bud cells of the foliate and vallate papillae, but no fluorescent cells were observed in the fungiform papilla. From the present results, it seems reasonable to conclude that the fluorigenic amine of taste bud cells may be 5-HT (serotonin), or at least an indoleamine derivative. Also, it is suggested that the taste bud of the vallate papilla contains a cell type which can potentially synthesize a biogenic amine in situ, or is actually synthesizing it in a very small amount just like in the case of the taste bud of the foliate one.  相似文献   

19.
Transformed and cultured cell lines have significant shortcomings for investigating the characteristics and responses of native villus enterocytes in situ. Interpretations of results from intact tissues are complicated by the presence of underlying tissues and the crypt compartment. We describe a simple, novel, and reproducible method for preparing functional epithelia using differentiated enterocytes harvested from the small intestine upper villus of adult mice and preterm pigs with and without necrotizing enterocolitis. Concentrative, rheogenic glucose uptake was used as an indicator of epithelial function and was demonstrated by cellular accumulation of tracer 14C d-glucose and Ussing chamber based short-circuit currents. Assessment of the epithelia by light and immunofluorescent microscopy revealed the harvested enterocytes remain differentiated and establish cell–cell connections to form polarized epithelia with distinct apical and basolateral domains. As with intact tissues, the epithelia exhibit glucose induced short-circuit currents that are increased by exposure to adenosine and adenosine 5′-monophosphate (AMP) and decreased by phloridzin to inhibit the apical glucose transporter SGLT-1. Similarly, accumulation of 14C d-glucose by the epithelia was inhibited by phloridzin, but not phloretin, and was stimulated by pre-exposure to AMP and adenosine, apparently by a microtubule-based mechanism that is disrupted by nocodazole, with the magnitudes of responses to adenosine, forskolin, and health status exceeding those we have measured using intact tissues. Our findings indicate that epithelia prepared from harvested enterocytes provide an alternative approach for comparative studies of the characteristics of nutrient transport by the upper villus epithelium and the responses to different conditions and stimuli.  相似文献   

20.
Atrial cardiocytes contain specific atrial granules ( SAGs ) which are the storage site of atrial natriuretic factor (ANF). The purpose of the present study was to determine whether ANF produces natriuresis by inhibiting Na+-K+ pump activity and whether this factor is similar to the humoral sodium transport inhibiting factor ( HSTIF ) previously demonstrated in acutely volume expanded animals and humans as well as in experimental and human essential hypertension. Our results indicate that, in contrast to the HSTIF , ANF does not inhibit membrane Na+,K+-ATPase, vascular smooth muscle cell Na+-K+ pump activity, or sodium transport in the toad bladder. Intravenous infusion of ANF in the bilaterally nephrectomized, hexamethonium-treated rat produces only a small transient pressor response, probably due to potentiation of endogenous norepinephrine. These findings strongly suggest that the ANF is not the same as the HSTIF detected on acute volume expansion and in some forms of hypertension. They also suggest that the diuretic and natriuretic effects of ANF are due to mechanism(s) other than blood pressure elevation and inhibition of Na+-K+ pump activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号