首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The real-time measurement of electrically evoked dopamine was established in brain extracellular fluid of freely moving rats. Dopamine was monitored by fast-scan cyclic voltammetry at carbon fiber microelectrodes lowered into the striatum by means of a detachable micromanipulator. A stimulating electrode, previously implanted in the substantia nigra, was used to evoke striatal dopamine efflux. Evoked extracellular dopamine was both current and frequency dependent. When low current intensities (±125 µA) and frequencies (10–20 Hz) were applied, detectable levels of dopamine were elicited without a perceptible behavioral response. Reproducible concentrations of extracellular dopamine could be evoked in the same rat for at least 2 months. These concentrations, moreover, were significantly higher in freely moving rats compared with rats anesthetized with Equithesin. Analysis of measured curves for dopamine uptake and release rates revealed that anesthesia inhibits release but does not affect uptake. It is concluded that (a) fast-scan cyclic voltammetry at carbon fiber microelectrodes is a viable technique for the measurement of electrically evoked dopamine in brain extracellular fluid of freely moving rats, (b) it is possible to determine in situ rate constants for dopamine release and uptake from these temporally and spatially resolved measurements of levels of dopamine, and (c) transient changes in extracellular dopamine levels elicited by electrical stimulation are affected by anesthesia.  相似文献   

2.
急性神经损伤引起脊髓背角C-纤维诱发电位长时程增强   总被引:10,自引:0,他引:10  
Zhang HM  Zhou LJ  Hu XD  Hu NW  Zhang T  Liu XG 《生理学报》2004,56(5):591-596
神经损伤引起神经病性疼痛,表现为持续性痛超敏和痛觉过敏。目前对神经病性疼痛的机制尚缺乏了解。我们以往的工作表明强直电刺激坐骨神经可引起脊髓背角C-纤维诱发电位的长时程增强(long-term potentiation,LTP),该LTP被认为是病理性疼痛的突触模型。本研究的目的在于探讨急性神经损伤是否能在完整动物的脊髓背角诱发出C-纤维诱发电位LTP。在以测试刺激(10~20V,0.5ms)电刺激坐骨神经的同时在脊髓背角用微电极记录C一纤维诱发电位。分别用强直刺激、剪断或夹捏坐骨神经诱导LTP。结果发现:(1)剪断或夹捏坐骨神经都可以诱导脊髓背角C-纤维诱发电位的LTP,该LTP可持续到实验结束(3~9h),在剪断神经前10min用利多卡因局部阻滞坐骨神经则可完全阻断LTP的产生;(2)神经损伤诱导的LTP可被NMDA受体阻断剂AP5所阻断;(3)用单次强直刺激引起LTP后,切断坐骨神经可使LTP的幅度进一步增大,而用多次强直电刺激使LTP饱和后,损伤神经则不能使LTP进一步增大。切断神经引起LTP后,强直电刺激也不能使LTP进一步增大。这些结果表明,急性神经损伤可以诱导脊髓背角C纤维诱发电位LTP,且切断神经能更有效地诱导LTP。该试验进一步支持我们的设想,即脊髓背角C-纤维诱发电位LTP可能在病理性疼痛的形成中起重要作用。  相似文献   

3.
Neuropeptide Y (NPY)-immunoreactive nerve fibers were numerous around arteries and few around veins. NPY probably co-exists with noradrenaline in such fibers since chemical or surgical sympathectomy eliminated both NPY and noradrenaline from perivascular nerve fibers and since double staining demonstrated dopamine-beta-hydroxylase, the enzyme that catalyzes the conversion of dopamine to noradrenaline, and NPY in the same perivascular nerve fibers. Studies on isolated blood vessels indicated that NPY is not a particularly potent contractile agent in vitro. NPY greatly enhanced the adrenergically mediate contractile response to electrical stimulation and to application of adrenaline, noradrenaline or histamine, as studied in the isolated rabbit gastro-epiploic and femoral arteries. The potentiating effect of NPY on the response to electrical stimulation is probably not presynaptic since NPY affected neither the spontaneous nor the electrically evoked release of [3H]noradrenaline from perivascular sympathetic nerve fibers.  相似文献   

4.
Continuous amperometry coupled with untreated carbon-fibre electrodes was used in anaesthetized rats to measure the noradrenaline release evoked in the anteroventral thalamic nucleus by electrical stimulation of the dorsal noradrenergic bundle. As expected, the variations in the oxidation current detected in the anteroventral thalamic nucleus exhibited the characteristics of the in vivo noradrenaline release. They were closely correlated with stimulation and consistent with the anatomy of the noradrenergic system involved. They were abolished by the ejection of tetrodotoxin in the vicinity of the carbon-fibre electrode, diminished by clonidine, an alpha-2 agonist, and restored by yohimbine, an alpha-2 antagonist. Furthermore, the time course of these variations was dramatically increased by desipramine, a specific noradrenaline reuptake blocker. In contrast, neither dopamine nor serotonin reuptake blockers, nor the monoamine oxidase inhibitor pargyline were able to alter them. The main advantage of the present approach is its excellent time resolution. We show here for the first time that after single pulse stimulation, noradrenaline is released and eliminated in 118 milliseconds, this time lapse corresponding to the maximal period beyond which subsequent noradrenaline releases could not add up. These observations are in good agreement with the physiological relationship previously observed between impulse flow and noradrenaline overflow.  相似文献   

5.
The positive chronotropic response to stimulation of adrenergic nerve endings in the sinoatrial node was studied in isolated atria from the hearts of rats of different ages. Dimethylphenylpiperazinium (DMPP) was used for chemical stimulation and transmural stimulation of the sinoatrial node region as electrical stimulation; in both cases noradrenaline is released from the nerve endings. With both stimulation methods, postnatal development was recorded in two phases. In the first phase, positive chronotropic responses are markedly increased and attained the maximum at the age of 14 days on using DMPP and of 24 days on using electrical stimulation. In the second phase, positive chronotropic responses diminish and at the age of about 45 days, with both stimulation methods, they become reduced to adult level. The first developmental phase can be attributed to an increase in the noradrenaline content of the nerve endings and the release of a larger amount of the transmitter during stimulation, together with an increase in the noradrenaline sensitivity of the cells of the sinoatrial node. It is not clear why positive chronotropic responses decrease in the second phase, when the noradrenaline content of the myocardial tissue continues to rise and pacemaker sensitivity to noradrenaline is not reduced.  相似文献   

6.
Most physiological studies of the human olfactory system haveconcentrated on the cortical level; the olfactory bulbar levelhas been studied rarely. We attempted to stimulate the humanolfactory mucosa by electrical pulse to detect the bulbar potentials.Electrical stimulation (2 mA, 0.5 ms) of the human olfactorymucosa evoked a change in potential recorded from the frontalsector of the head. A negative peak of the evoked potentialthat occurred at 19.4 ms (grand means, n = 5) after stimulationwas the clearest. The highest amplitude of the potential wasrecorded from the frontal sector of the head on the stimulatedside. Our findings were similar to the experimental resultsobtained from the olfactory bulbs of animals. This evoked potentialwas considered to be the human olfactory bulbar potential. Whenthe subjects were stimulated by applying electricity to theolfactory mucosa, no sensation of smell occurred even thoughevoked potentials were recorded. Evoked potentials were recordedonly when the stimulating electrode was located in the olfactorycleft. When the stimulating electrode was outside the olfactorycleft, the stimulation caused pain. The trigeminal nerve seemedto be stimulated by electricity. Olfactory evoked potentialsproduced by the electrical stimulation of the human olfactorymucosa should aid the research on human olfactory physiology,and may be applicable to clinical tests of olfactory dysfunction.Chem. Senses 22: 77–81, 1997.  相似文献   

7.
Bipolar electrodes were implanted into the CA1 pyramidal cells of the dorsal hippocampus and the effect of electrical stimulation of these cells on corticosterone secretion was investigated in freely moving rats. Histology showed that the electrodes were positioned in close proximity to the CA1 pyramidal cells. Rats that were subjected to high intensity electrical stimulation (1, 10, and 100A) behaved differently when compared to their sham stimulated controls. They were more active and displayed wet dog shakes. Plasma corticosterone levels increased dose-dependently in rats subjected to different electrical stimulation intensities. Although prior treatment (24 hours) of rats with DSP4 (60 mg/kg, i.p.) significantly reduced hippocampal noradrenaline content by 46%, it did not bring about any behavioural changes. DSP4 treatment also had no effect on electrically stimulated corticosterone release. These data suggested that stimulation of CA1 pyramidal cells may lead to increased corticosterone release and that a decrease in hippocampal noradrenaline concentration was unable to alter this corticosterone response.  相似文献   

8.
Two types of evoked potentials are recorded in the tectum mesencephali in response to electrical stimulation of the forebrain surface of the turtleEmys orbicularis. The results of a layer-by-layer analysis show that evoked potentials of type I in response to stimulation of the hippocampal and piriform cortex are generated outside the tectum. Evoked potentials of type II, consisting of two surface-negative components, are recorded in the tectum in response to stimulation of the rostro-central surface of the forebrain. The first component appeared after a latent period of 20 msec and lasted 40–60 msec; the second component appeared after 80–100 msec and lasted 100–300 msec. Layer-by-layer and pharmacological analysis showed that the first component of the type II evoked potential is generated in the tegmental structures of the mesencephalon, whereas the second (long-latency) is generated in the tectum. The tectal origin of the second component is confirmed by its interaction with the tectal response to photic stimulation or to electrical stimulation of the optic nerve, evidence that these evoked potentials are generated by common structures. The efferent pathway from the dorsal cortex to the primary visual center is unilateral and has features of polysynaptic projections (long latent period, low lability).  相似文献   

9.
A beta-bungarotoxin was isolated from the venom of Bungarus multicinctus by column chromatography on Sephadex G-50 and SP-Sephadex. The toxin produced presynaptic effects on neuromuscular transmission with characteristics similar to those described by others. In a sympathetic ganglion, the toxin increased spontaneous acetylcholine (ACh) release and decreased ACh release evoked by preganglionic nerve stimulation. The toxin did not block the response of isolated ileum to cholinergic nerve stimulation, did not block the release of noradrenaline from the adrenergic nerve terminals of a nictitating membrane preparation, and did not alter the responses of smooth and cardiac muscle preparations to noradrenaline. It is suggested that the specificity of beta-bungarotoxin for certain nerve terminals is related either to selective binding of the toxin or to the selective presence of a necessary substrate for its action. An attempt to show selective binding of 125I-toxin to cholinergic nerve terminals in skeletal muscle was not successful.  相似文献   

10.
Abstract: Electrical stimulation of the ascending dorsal tegmental bundle of the locus ceruleus was used to elicit controlled release of norepinephrine. Real-time in vivo monitoring in the brains of urethane-anesthetized rats was observed with high speed chronocoulometry at rapidly responding carbon fiber electrodes. Using modeling similar to that developed for dopamine release, the electrochemical signals were characterized as the balance between norepinephrine release per electrical stimulation pulse and apparent Michaelis-Menten reuptake parameters. Stimulation produced simultaneous overflow release at all terminal fields examined. The release and reuptake characteristics varied considerably in different regions. If the parameters are normalized to endogenous concentration in the terminal fields, release but not reuptake correlates with innervation density in several regions. Stimulated release results in norepinephrine overflow and transport in most brain regions with half-lives of 1–3 s and overflow distances of 25–50 µm at most. A surprising exception occurs in the upper layers of cortex (cingulate and sensory) where half-lives may be in the 10s of seconds and spatial reach may be up to 100 µm. The uptake in the outer cortical layers appears to be minimal and comparable with only nonspecific reuptake.  相似文献   

11.
The modulatory effects of vasodilatory peptides on noradrenaline release from sympathetic nerve terminals have been studied in the rat portal vein model. Transmural field stimulation of the longitudinally mounted vein preparation evoked concomitant increases in the [3H]noradrenaline overflow and the integrated tension. Both responses were abolished by guanethidine or tetrodotoxin, whereas only the tension response was blocked by phentolamine. CGRP and VIP, both being present in intramural nerve fibers in the rat portal vein, were compared with atriopeptin II for modulatory effects. CGRP (100 nM) had no effect on the overflow of [3H]noradrenaline or the integrated tension response to transmural stimulation. VIP (30 nM) and atriopeptin II (30 nM) both caused significant reductions of both [3H]noradrenaline overflow and the integrated tension. These results indicate that the decreased tension response to transmural stimulation in the presence of VIP or AP II reflects the sum of both pre- and postsynaptic inhibitions.  相似文献   

12.
Somatosensory evoked potentials (SEPs) and compound nerve action potentials (cNAPs) have been recorded in 15 subjects during electrical and magnetic nerve stimulation. Peripheral records were gathered at Erb's point and on nerve trunks at the elbow during median and ulnar nerve stimulation at the wrist. Erb responses to electrical stimulation were larger in amplitude and shorter in duration than the magnetic ones when ‘electrical’ and ‘magnetic’ compound muscle action potentials (cMAPs) of comparable amplitudes were elicited. SEPs were recorded respectively at Cv7 and on the somatosensory scalp areas contra- and ipsilateral to the stimulated side. SEPs showed a statistically significant difference in amplitude only for the brachial plexus response and for the ‘cortical’ N20-P25 complex; differences were not found between the magnetic and electrical central conduction times (CCTs) or for the peripheral nerve response latencies. Magnetic stimulation preferentially excited the motor and proprioceptive fibres when the nerve trunks were stimulated at motor threshold intensities.  相似文献   

13.
Abstract: The release of dopamine in the striatum, nucleus accumbens, and olfactory tubercle of anesthetized rats was evoked by electrical stimulation of the mesolimbic dopaminergic pathway (four pulses at 15 Hz or four pulses at 200 Hz). Carbon fiber electrodes were implanted in these regions to monitor evoked dopamine overflow by continuous amperometry. The kinetics of dopamine elimination were estimated by measuring the time to 50% decay of the dopamine oxidation current after stimulation ceased. This time ranged from 64 ms in the striatum to 113 ms in the nucleus accumbens. Inhibition of dopamine uptake by nomifensine (2–20 mg/kg), GBR 12909 (20 mg/kg), cocaine (20 mg/kg), mazindol (10 mg/kg), or bupropion (25 mg/kg) enhanced this decay time by up to +602%. Uptake inhibition also produced an increase in the maximal amplitude of dopamine overflow evoked by four pulses at 15 Hz. This latter effect was larger in the striatum (+420%) than in mesolimbic areas (+140%). These results show in vivo that these uptake inhibitors actually slow the clearance of dopamine released by action potentials and suggest that dopaminergic transmission is both prolonged and potentiated strongly by these drugs, in particular in the striatum.  相似文献   

14.
The present study compared the cerebral processing of non-painful and painful cutaneous CO2 laser stimulation and intramuscular electrical stimulation in 11 normal subjects. The overall wave form morphology of the long-latency evoked potentials (EPs) at the central vertex (Cz) was identical and surface topographic mappings of the 21-channel recordings showed similar distributions, suggesting involvement of common neural generators. However, the EPs caused by intramuscular stimulation differed from cutaneous stimulation in several distinct ways. First, the latency of the major positive and negative components were significantly shorter with intramuscular stimulation (N 128–145 ms; P 274–298 ms) compared to cutaneous stimulation (N 235–286 ms; P 371–383 ms) (P<0.001). Second, the peak-to-peak amplitude and root-mean-square values of intramuscular EPs recorded at Cz showed a ceiling effect in the painful range, whereas the laser EPs continued to increase in this range. Third, painful intramuscular, but not non-painful, stimulation caused a frontal activity which not was observed with cutaneous laser stimulation at any intensity. Conduction velocity measurements indicated activation of nociceptive A-delta afferents with cutaneous laser stimulation (10.2±0.2 m/s) and activation of a mixed nerve fiber population with intramuscular electrical stimulation (65.8±25.8 m/s). Differences between laser and intramuscular EPs may be due to different types and origins of activated afferent fibers. Laser EPs can be used specifically to assess cutaneous A-delta fiber function, whereas intramuscular EPs reflect the cerebral processing of a mixed afferent input from muscle tissue.  相似文献   

15.
The effects of electrical stimulation of the stellate ganglia on the arterio-venous concentration differences of neuropeptide Y (NPY)-like immunoreactivity (LI) over the pig heart were studied in vivo in relation to changes in heart rate and left ventricular pressure. Furthermore, the effects of NPY on coronary vascular tone were analysed in vivo and in vitro. Stellate ganglion stimulation at a high frequency (10 Hz) caused a clear-cut, long lasting increase in plasma levels of NPY-LI in the coronary sinus compared to the aorta, suggesting release of this peptide from sympathetic terminals within the heart. The stimulation-evoked overflow of NPY-LI from the heart was enhanced about 3-fold by alpha-adrenoceptor blockade using phenoxybenzamine, suggesting that NPY release is under prejunctional inhibitory control by noradrenaline (NA). Combined alpha- and beta-adrenoceptor blockade abolished most of the positive inotropic response of the heart upon stellate ganglion stimulation, while a considerable positive chronotropic effect remained. After guanethidine treatment, stellate ganglion stimulation still produced a small positive inotropic and chronotropic effect on the heart. The stimulation evoked NPY overflow was markedly reduced by guanethidine indicating an origin from sympathetic nerve terminals. Injection of NPY into the constantly perfused left anterior descending artery in vivo caused a long lasting, adrenoceptor antagonist resistant increase in perfusion pressure, suggesting coronary vasoconstriction. NPY contracted coronary arteries in vitro via a nifedipine-sensitive mechanism. NA dilated coronary vessels both in vivo and in vitro via beta-adrenoceptor activation. It is concluded that sympathetic nerve stimulation increases overflow of NPY-LI from the heart suggesting release from cardiac nerves in vivo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A heparin/polypyrrole (PPy) composite, an electrical conducting polymer, was designed to enhance the interactions between a gold-coated matrix and nerve cells, with the cell (PC12 cells) interactions investigated under different conditions, both with and without electrical stimulation. The heparin concentration in the composites increased with increasing current density under the preparation condition, indicating that the heparin concentration in the composite could be controlled by managing the current density. Optical imaging showed that PC12 cells well attached to the PPy surfaces covered with heparin, but were poorly interacted to PPy surfaces without the heparin and gold coated matrix. The neurite length of the PC12 cells on the surfaces with an electrical stimulation (100 mV for 1h) significantly increased, with a median length of 77.5 μm; whereas, that without electrical stimulation was 10∼20 μm. Therefore, the heparin/polypyrrole (PPy) composite may provide insight for the development of an ideal nerve guidance channel.  相似文献   

17.
This study was performed to elucidate catecholamine release in the pulmonary circulation of isolated lungs due to the sympathetic nerve stimulation and to assess the experimental conditions which can modify the release, i.e., stimulus intensity, ventilation state of the lung and flow rate of perfusion. In artificially ventilated lungs, electrical stimulation of stellate ganglions evoked large noradrenaline efflux from the lung, but adrenaline efflux was below the detection limit, and dopamine was not detected in any case. In the unventilated preparations, the lung parenchyma were not bleached and the arterial pressure was significantly higher than in ventilated preparations. Noradrenaline efflux from the unventilated group was significantly lower than that from the ventilated preparations. The effect of the perfusion flow rate was investigated under pressure-operated ventilation. The pulmonary arterial pressure (Pa) was not varied at 5-10 ml min-1, but it was increased significantly at 20 ml min-1. Noradrenaline efflux was also increased significantly at 20 ml min-1. These results indicate that noradrenaline was the catecholamine exclusively released from pulmonary vasculature due to the sympathetic nerve stimulation, and that both ventilation and the perfusion flow rate could affect the release. The concomitant increase in arterial pressure indicates that noradrenaline efflux would be affected by the alteration in resistive small arteries. Circulatory change in these arteries is supposed to be one of the factors that modify noradrenaline release from the lungs. The analysis of noradrenaline should be a useful method to evaluate the sympathetic effect on the pulmonary vasculature.  相似文献   

18.
In 7 awake patients with neuropathic lower extremity pain, spinal somatosensory evoked potentials (SEP) were elicited from the non-painful leg by electrical stimulation of the peroneal nerve and mechanical stimulation of the hallux ball. Recording was made epidurally in the thoraco-lumbar region by means of an electrode temporarily inserted for trial of pain-suppressing stimulation.In response to peroneal nerve stimulation, two major SEP complexes were found. The first complex consisted, as has been described earlier, of an initial positivity (P12), a spike-like negativity (N14), a slow negativity (N16) and a slow positivity (P23). The second complex consisted of a slow biphasic wave, conceivably mediated by a supraspinal loop. Both complexes had a similar longitudinal distribution with amplitude maxima at the T12 vertebral body.The SEP evoked by mechanical hallux ball stimulation had a relatively small amplitude, and there was no significant second complex. The relationship between stimulus intensity and SEP amplitude was negatively accelerating.The longitudinal distribution of spinal SEP was compated with the somatotopic distribution of paresthesiae induced by stimulation through the epidural electrode. It was found that stimulation applied at the level of maximal SEP generally induced paresthesiae in the corresponding peripheral region. Therefore, spinal SEP may be used as a guide for optimal positioning of a spinal electrode for therapeutic stimulation when implanted under general anesthesia.An attempt was made to record the antidromic potential in the peroneal nerve elicited from the dorsal columns by epidural stimulation. The antidromic response was, however, very sensitive to minimal changes of stimulus strength and body position of the patient, and was also contaminated by simultaneously evoked muscular reflex potentials.Thus, peripheral responses evoked by epidural stimulation appeared too unreliable to be useful for the permanent implantation of a spinal electrode for therapeutic stimulation.  相似文献   

19.
Changes in the arterial pressure, in the heart and respiratory rate evoked by the gastrocnemuis nerve stimulation were studied on conscious cats before and during intravenous injection of noradrenaline. Stimulation of the gastrocnemius nerve increased the arterial pressure, the heart and respiratory rates. The same stimulation of the nerve during hypertension caused by noradrenaline injection led to the fall of arterial pressure and tachycardia. The depressor response failed to change under the effect of the beta-adrenoreceptor block and disappeared after the m-cholinoreceptor block with methylatropine. The depressor response was absent in the unanesthetized decerebrated cats. It is supposed that the depressor response of the arterial pressure depended on the strong cholinergic vasodilatation, reflexively evoked by stimulation of the motor nerve in the intact cats.  相似文献   

20.
Generators of early cortical somatosensory evoked potentials (SEPs) still remain to be precisely localised. This gap in knowledge has often resulted in unclear and contrasting SEPs localisation in patients with focal hemispheric lesions. We recorded SEPs to median nerve stimulation in a patient with right frontal astrocytoma, using a 19-channel recording technique. After stimulation of the left median nerve, N20 amplitude was normal when recorded by the parietal electrode contralateral to the stimulation, while it was abnormally enhanced in traces obtained by the contralateral central electrode. The amplitude of the frontal P20 response was within normal limits. This finding suggests that two dipolar sources, tangential and radial to the scalp surface, respectively, contribute concomitantly to N20 generation. The possible location of the N20 radial source in area 3a is discussed. The P22 potential was also recorded with increased amplitude by the central electrode contralateral to the stimulation, while N30 amplitude was normal in frontal and central traces. We propose that the radial dipolar source of P22 response is independent from both N20 and N30 generators and can be located either in 3a or in area 4. This report illustrates the usefulness of multichannel recordings in diagnosing dysfunction of the sensorimotor cortex in focal cortical lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号