首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purified A protein and A* protein of bacteriophage phi X174 have been tested for endonuclease activity on single stranded viral phi X174 DNA. The A protein (55.000 daltons) nicks single-stranded DNA in the same way and at the same place as it does superhelical RFI DNA, at the origin of DNA replication. The A* protein (37.000 daltons) can cleave the single-stranded viral DNA at many different sites. It has however a strong preference for the origin of replication. Both proteins generate 3'OH ends and blocked 5' termini at the nick site.  相似文献   

2.
Drosophila melanogaster topoisomerase II is capable of joining phi X174 (+) strand DNA that it has cleaved to duplex oligonucleotide acceptor molecules by an intermolecular ligation reaction (Gale, K. C. and Osheroff, N. (1990) Biochemistry 29, 9538-9545). In order to investigate potential mechanisms for topoisomerase II-mediated DNA recombination, this intrinsic enzyme activity was further characterized. Intermolecular DNA ligation proceeded in a time-dependent fashion and was concentration-dependent with respect to oligonucleotide. The covalent linkage between phi X174 (+) strand DNA and acceptor molecules was confirmed by Southern analysis and alkaline gel electrophoresis. Topoisomerase II-mediated intermolecular DNA ligation required the oligonucleotide to contain a 3'-OH terminus. Moreover, the reaction was dependent on the presence of a divalent cation, was inhibited by salt, and was not affected by the presence of ATP. The enzyme was capable of ligating phi X174 (+) strand DNA to double-stranded oligonucleotides that contained 5'-overhang, 3'-overhand, or blunt ends. Single-stranded, nicked, or gapped oligonucleotides also could be used as acceptor molecules. These results demonstrate that the type II enzyme has an intrinsic ability to mediate illegitimate DNA recombination in vitro and suggests possible roles for topoisomerase II in nucleic acid recombination in vivo.  相似文献   

3.
A DNA binding protein of 31 Kd -mtDBPC- has been isolated from X. laevis oocyte mitochondria. It is present in large amounts in the organelle and does not show any enzymatic activity. Its binding to the superhelical form of a DNA is higher than for any other form, or for RNA. No sequence specificity could be found for any mtDNA fragments tested, including both origins of replication. It is able to introduce superhelical turns into relaxed circular DNA in the presence of a topoisomerase I activity. It could be a component of the mitochondrial nucleoids.  相似文献   

4.
Covalently closed-circular, superhelical DNAs, including viral DNAs, bacterial plasmid DNAs, and bacteriophage replicative-form DNA, were treated with a small amount of Haemophilus gallinarum DNA-relaxing enzyme to generate incompletely relaxed DNA molecules. Each sample consisted of a set of closed-circular DNA molecules differing by one turn in their number of superhelical turns. The DNA samples were analyzed by agarose gel electrophoresis under conditions such that the electrophoretic mobility was a function of the number of turns. The numbers of superhelical turns (at 37 degrees C in 20 mM Tris-HCl (pH 7.5)-5 mM MgCl2) in the DNAs of pSC101 (5.8 megadaltons), Colicin E1 (4.2 megadaltons), pMR4 (4.0 megadaltons; recombinant between pBR322 and lambda DNA fragment), phi X174 replicative-form (RF) I, Simian virus 40 (SV40), and polyoma virus (3.4--3.6 megadaltons each), and lambda dv021 (2.05 megadaltons) were estimated to be 36, 27, 23--24, 20--21, 20--21, 20--21, and 11--13, respectively. It appears that the number of superhelical turns is mainly a function of the molecular weight of the DNA, at least in the substrates tested here.  相似文献   

5.
Highly purified nuclease TT1 from T. thermophilus HB8 acts on a linear single- and double-stranded DNA as an exonuclease and produces 5'-mononucleotides either from the 5'- or 3'-terminus. It was found that the enzyme also possesses an endonuclease activity specific for superhelical (form I) and single-stranded circular DNA. Form I of various kinds of DNA (phi X174, PM2, Co1E1 and RF 1010 etc.) is nicked to yield first relaxed circles (form II) and then nicked at the opposite site to yield unit length linear DNA (form III), which is subsequently hydrolyzed from the 5'- or 3'-terminus. A single cleavage of the form I of phi X174 DNA seemed to occur at a limited number of unique sites. Both endonuclease and the known exonuclease activities co-migrate on polyacrylmide gels, show the same pH and temperature optima, are stimulated by Mg2+ and are inactivated by EDTA similarly.  相似文献   

6.
The effective unwinding angle, phi, for cis-diamminedichloroplatinum(II) (cis-DDP) and trans-DDP was determined by utilizing high resolution gel electrophoresis and supercoiled phi X174 RF DNA as a substrate. The effective unwinding angle was calculated by equating the reduction in mobility of the DDP-modified DNA to the removal of a number of superhelical turns. The value of the effective unwinding angle for both DDP isomers was greatest at the low levels of DDP bound and decreased with increasing amounts of unwinding agent. The cis-isomer is a better unwinding agent than is the trans-isomer, being nearly twice as effective in unwinding the supercoiled DNA at the DDP levels investigated. A comparison of the magnitude of phi below rb values of 0.005 and those at high levels of binding reveals that the extent of torsional strain in the supercoiled DNA influences the magnitude of the unwinding of the DNA by these complexes. When this method is used in the analysis of the unwinding angle for a covalently bound species on supercoiled DNA, it may provide a more reliable estimate of the magnitude of phi at high degrees of supercoiling and at low levels of modification.  相似文献   

7.
In the presence of AMP and Mg2+, a covalently closed duplex DNA containing negative superhelical turns was treated with DNA ligase isolated from bacteriophage T4-infected E. coli. This resulted in the gradual and not sudden loss of superhelical turns as for example in the case of type I DNA topoisomerase. All DNA products remain covalently closed. Since T4 enzyme-mediated DNA relaxation is inhibited by both pyrophosphate and by ATP this suggests that DNA relaxing and DNA joining activities probably coincide. EDTA addition in the presence of a large excess of enzyme, induces the formation of nicked DNA products while protein denaturing treatments are not very effective. Our observations might suggest an involvement of the relaxing activity of DNA ligase during the ligation process.  相似文献   

8.
Reverse gyrase; ATP-dependent type I topoisomerase from Sulfolobus   总被引:10,自引:2,他引:8       下载免费PDF全文
Nakasu S  Kikuchi A 《The EMBO journal》1985,4(10):2705-2710
Reverse gyrase, a topoisomerase which introduces positive superhelical turns into DNA, has been purified from Sulfolobus to near homogeneity. It is a single polypeptide with a mol. wt. of 120 000 as determined by denaturing gel electrophoresis. Contrary to a previous report, it is a type I topoisomerase as judged by the linking-number change of closed circular DNA topoisomer. Unlike other known type I topoisomerases, ATP or dATP is required for introducing positive superhelical turns. In order to relax negatively supercoiled DNA, other nucleotide triphosphates (XTP) are also effective with low efficiency. In the absence of either XTP or divalent cations, the enzyme introduces nicks into closed circular DNA when the reaction is stopped by SDS. This suggests that reverse gyrase cuts one of the two strands of DNA in the course of its enzymatic reaction.  相似文献   

9.
K C Gale  N Osheroff 《Biochemistry》1990,29(41):9538-9545
Following its cleavage of double-stranded DNA, topoisomerase II is covalently bound to the 5'-termini of both nucleic acid strands. However, in order to isolate this enzyme-cleaved DNA complex in the presence of magnesium (the enzyme's physiological divalent cation), reactions must be terminated by the addition of a strong protein denaturant such as sodium dodecyl sulfate (SDS). Because of the requirement for a protein denaturant, it is unclear whether DNA cleavage in this in vitro system takes place prior to or is induced by the addition of SDS. To distinguish between these two possibilities, experiments were carried out to determine whether topoisomerase II bound DNA contains 3'-OH termini prior to denaturation. This was accomplished by using circular single-stranded phi X174 DNA as a model substrate for the enzyme. As found previously for topoisomerase II mediated cleavage of double-stranded DNA, the enzyme was covalently linked to the 5'-termini of cleaved phi X174 molecules. Moreover, optimal reaction pH as well as optimal salt and magnesium concentrations was similar for the two substrates. In contrast to results with double-stranded molecules, single-stranded DNA cleavage increased with time, was not salt reversible, and did not require the presence of SDS. Furthermore, cleavage products generated in the absence of protein denaturant could be labeled at their 3'-OH DNA termini by incubation with terminal deoxynucleotidyltransferase and [alpha-32P]ddATP. Finally, cleaved phi X174 molecules could be joined to a radioactively labeled double-stranded oligonucleotide by a topoisomerase II mediated intermolecular ligation reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Removal of negative superhelical turns in ColE1 plasmid DNA by Escherichia coli topoisomerase I was markedly enhanced by the presence of single-stranded DNA binding protein from E. coli. A lack of species specificity makes unlikely the possibility of physical association between topoisomerase I and single-stranded DNA binding proteins. Stabilization of single-stranded regions in supercoiled DNA by single-stranded DNA binding protein would appear to be the basis of the enhancement of topoisomerase activity.  相似文献   

11.
The bacteriophage T4-induced type II DNA topoisomerase has been shown previously to make a reversible double strand break in DNA double helices. In addition, this enzyme is shown here to bind tightly and to cleave single-stranded DNA molecules. The evidence that the single-stranded DNA cleavage activity is intrinsic to the topoisomerase includes: 1) protein linkage to the 5' ends of the newly cleaved DNA; 2) coelution of essentially homogeneous topoisomerase and the DNA cleavage activity; 3) inhibition of both single-stranded DNA cleavage and double-stranded DNA relaxation by oxolinic acid; and 4) inhibition of duplex DNA relaxation by single-stranded DNA. The major cleavage sites on phi X174 viral DNA substrates have been mapped, and several cleavage sites analyzed to determine the exact nucleotide position of cleavage. Major cleavage sites are found very near the base of predicted hairpin helices in the single-stranded DNA substrates, suggesting that DNA secondary structure recognition is important in the cleavage reaction. On the other hand, there are also many weaker cleavage sites with no obvious sequence requirements. Many of the properties of the single-stranded DNA cleavage reaction examined here differ from those of the oxolinic acid-dependent, double-stranded DNA cleavage reaction catalyzed by the same enzyme.  相似文献   

12.
E. coil RecA protein and topolsomerase I, acting on superhelical DNA and circular single strands in the presence of ATP and Mg2+, topologically link single-stranded molecules to one another, and single-stranded molecules to duplex DNA. When super-helical DNA is relaxed by prior incubation with topoisomerase, it is a poor substrate for catenation. Extensive homology stimulates the catenation of circular single-stranded DNA and superhelical DNA, whereas little reaction occurs between these forms of the closely related DNAs of phages φX174 and G4, indicating that, in conjunction with topoisomerase I, RecA protein can discriminate perfect or nearly perfect homology from a high degree of relatedness. Circular single-stranded G4 DNA reacts with superhelical DNA of a chimeric phage, M13Goril, to form catenanes, at least half of which survive heating at 80°C following restriction cleavage in the M13 region, but few of which survive following restriction cleavage in the G4 region. Electron microscopic examination of catenated molecules cleaved in the M13 region reveals that in most cases the single-stranded G4 DNA is joined to the linear duplex M13(G4) DNA in the homologous G4 region. The junction frequently has the appearance of a D loop, with an extent equivalent to 100 or more bp. We conclude that a significant fraction of catenanes were hemicatenanes, in which the single-stranded circle was topologically linked, probably by multiple turns, to its complementary strand in the duplex DNA. These observations support the previous conclusion that RecA protein can pair a single strand with its complementary strand in duplex DNA in a side-by-side fashion without a free end in any of the three strands.  相似文献   

13.
Preferential binding of human topoisomerase I to superhelical DNA.   总被引:4,自引:1,他引:3       下载免费PDF全文
K R Madden  L Stewart    J J Champoux 《The EMBO journal》1995,14(21):5399-5409
  相似文献   

14.
Mycoplasmavirus MVL2 is a nonlytic enveloped virion containing DNA. This DNA has been shown to be a double-stranded circular superhelical molecule of 11.8 kilobase pairs (7.8 X 10(6) daltons). The superhelix density is greater than that of phi X174 RFI but less than that of PM2 phage DNA. A physical map of the MVL2 genome has been obtained using restriction endonucleases.  相似文献   

15.
The DNA sequence of 30 nucleotides which surrounds the origin of viral strand DNA replication is highly conserved amongst the icosahedral single-stranded DNA bacteriophages. The A gene of these phages encodes a protein which is required for initiation and termination of viral strand DNA synthesis and acts as a nicking-closing activity specifically within this 30-nucleotide sequence. A system of purified Escherichia coli host proteins and phi X174 gene A protein has been developed which specifically replicates in vitro the viral strand of phi X174 from RF (replicative form) I template DNA and yields single-stranded circular DNA products (RF leads to SS(c) DNA replication system). Recombinant plasmids carrying inserts derived from phage phi X174 or G4 DNA which range in length from 49 to 1175 base pairs and contain the 30-nucleotide conserved sequence have been shown to support phi X A protein-dependent DNA synthesis in vitro in this replication system. We report here that insertion of the 30-nucleotide sequence alone into pBR322 allows the resulting recombinant plasmids to support phi X A protein-dependent in vitro DNA synthesis as efficiently as phi X174 template DNA in the RF leads to SS(c) replication system. The 30-nucleotide sequence functions as a fully wild type DNA replication origin as determined by the rate of DNA synthesis and the structure of resulting DNA products. Furthermore, the DNA sequence requirements for nicking of RF I DNA by the phi X A protein and for supporting replication origin function have been partially separated. Homology to positions 1, 29, and 30 of the 30-nucleotide conserved sequence are not required for cleavage of RF I DNA by the A protein; homology to position 1 but not 29 or 30 is required for efficient DNA replication.  相似文献   

16.
A specific DNA unwinding activity associated with SV40 large T antigen   总被引:3,自引:0,他引:3  
The incubation of highly purified large T antigen with relaxed, circular SV40 DNA in the presence of topoisomerase I (nicking closing enzyme) resulted in the introduction of negative superhelical turns in the DNA. ATP was not required for this reaction. A similar introduction of superhelical turns could also be obtained when a recombinant plasmid DNA (Y182), which contains sequences from both SV40 DNA and pBR322, was used. However, no effect was observed when relaxed pBR322 DNA, which does not contain SV40 DNA sequences, was incubated with T antigen in the presence of topoisomerase. These results are consistent with the hypothesis that large T antigen can recognize and unwind specific sequences on SV40 DNA.  相似文献   

17.
Identification of a potent decatenating enzyme from Escherichia coli   总被引:20,自引:0,他引:20  
A topoisomerase has been purified from extracts of a topoisomerase I-deficient strain of Escherichia coli based solely on its ability to segregate pBR322 DNA replication intermediates in vitro. This enzyme rapidly decatenated multiply linked form II:form II DNA dimers to form II DNA, provided that the DNA substrate contained single-stranded regions. Efficient relaxation of negatively supercoiled DNA was observed when reaction mixtures were incubated at 52 degrees C, but not at 30 degrees C (the temperature at which decatenation was readily observed). This topoisomerase was insensitive to the DNA gyrase inhibitor norfloxacin and unaffected by antibody directed against topoisomerase I. Relaxation of a unique plasmid topoisomer revealed that this decatenase changed the linking number of the DNA in steps of one and was therefore a type 1 topoisomerase. The cleavage pattern of a fragment of single-stranded phi X174 DNA generated by this decatenase was virtually identical to that reported for topoisomerase III, the least characterized topoisomerase present in E. coli.  相似文献   

18.
A new system for studying the molecular mechanisms of mutation by carcinogens is described. The system involves (a) site-specific modification of the essential gene G in phi X174 replicative form DNA by a combination of chemical and enzymatic steps; (b) production of mutant virus carrying a change at a single preselected site by transfection of spheroplasts with the site modified phi X174 DNA; (c) detection and propagation of mutants using a host carrying the plasmid, p phi XG, that rescues all type of gene G mutants by complementation; (d) identification of the mutation in the progeny virus by isolating and sequencing mutant phi X174 DNA in the region that carried the parental, site-specific change. To demonstrate that this system is operational, we have produced a previously unknown phi X174 gene G mutant carrying a C leads to T base change at position 2401 of the viral (plus) strand. This preplanned, nonsense (amber) mutant was obtained by changing G to A at the appropriate position in a chemically synthesized, octadeoxynucleotide, minus strand primer; elongating this enzymatically with Escherichia coli DNA polymerase I (larger fragment) (lacking 5' leads to 3' exonuclease activity) to a 17-mer; and repriming to obtain the site-modified phi X174 replicative form DNA enzymatically with E. coli DNA polymerase I (large fragment) and T4 DNA ligase. After transfection of spheroplasts with the heteroduplex DNA, the lysate was screened for mutant virus with permissive (carrying p phi XG) and nonpermissive (without p phi XG) host cells. About 1% of the progeny virus were mutants. Out of 15 isolates, 11 were suppressible by an amber Su1+ (serine) or an ochre Su8+ (glutamine) suppressor. The other 4 isolates were not suppressed at all. Replicative form DNA produced from one of the suppressible mutants was shown (by sequencing) to contain the expected C leads to T change at the preselected site in the viral strand. Replicative form DNA from one of the nonsuppressible mutants was partially sequenced. No change was found at or around position 2401. The nature of the mutation(s) in these isolates is still unknown. The occurrence of mutations outside the preselected sites represent a potential problem for our projected studies, but additional data is required before the problem can be fully evaluated. In spite of this, it should be possible to study, in vivo, the biological effects of any site-specific modification (including covalent modifications by carcinogens) that can be introduced into gene G of phi X174 DNA via a synthetic, oligonucleotide primer.  相似文献   

19.
A new topoisomerase capable of relaxing negatively supercoiled DNA in Escherichia coli has been identified during chromatography on novobiocin-Sepharose. A simple and reproducible purification procedure is described to obtain this enzyme, called topoisomerase III (topo III), in a homogeneous form. The protein is a single polypeptide with a molecular weight of 74 000 +/- 2000 and is a type I topoisomerase, changing the linking number of DNA circles in steps of one. It is present in deletion strains lacking the topA gene and further differs from the well-studied topoisomerase I (omega protein; Eco topo I) in (1) its requirement for K+ in addition to Mg2+ to exhibit optimal activity and (2) its affinity to novobiocin-Sepharose. Positively supercoiled DNA is not relaxed during exposure to the enzyme. Topo III has no ATPase activity, and ATP does not show any discernible effect on the reduction of superhelical turns. The purified topoisomerase has no supercoiling activity and is unaffected by high concentrations of oxolinic acid and novobiocin in the relaxing reaction. Single-stranded DNA and spermidine strongly inhibit the topoisomerase activity.  相似文献   

20.
The A* protein of phi X174 is an inhibitor of DNA replication   总被引:6,自引:1,他引:5       下载免费PDF全文
Extracts prepared from phi X174 infected E. coli cells inhibited in vitro RF replication The inhibition was dependent upon the presence of A* protein in the reaction and served as an assay to highly purify the A* protein. Purified A* protein bound tightly to duplex DNA as well as single-stranded DNA. The binding of the A* protein to duplex DNA inhibited (I) its single-stranded DNA specific endonucleolytic activity; (II) in vitro synthesis of viral (+) single stranded DNA on an A-RFII DNA complex template; (III) ATP hydrolysis by rep protein and unwinding of the strands of RF DNA. We propose that this inhibitory activity is responsible in vivo for the shut off of E. coli chromosome replication during phi X174 infection, and has a role in the transition from semiconservative RF DNA replication to single-stranded DNA synthesis in the life cycle of phi X174.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号