首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transforming growth factors- 1, 2, and 3 are known for their regulatory function in embryogenesis, fibrogenesis, and tissue repair of different cell types. A trophic function of TGF- subclasses for motoneurons has been shown in vitro. TGF- 1 is a potent survival factor for cultured embryonic rat motoneurons. In addition, TGF- 1 stimulates proliferation of rat Schwann cells. Recently, TGF- 2 has been reported to be associated with the subsynaptic nuclei of mature rat neuromuscular junctions. In this study, we investigated the expression of TGF- 1, 2, and 3 at neuromuscular junctions in skeletal muscle of 11 adults without neuromuscular disease. On muscle biopsies, neuromuscular junctions were depicted by acetylcholine esterase reaction and acetylcholine receptor antibodies. TGF- 1, 2, and 3 were stained immunohistochemically with monoclonal antibodies. Some muscle fibers showed low levels of inhomogeneous immunoreactivity for both TGF- 1 and TGF- 3. Intense immunoreactivity of TGF- 1 and 3 was shown at the postsynaptic area of neuromuscular junctions. TGF- 2 was expressed in the same subcellular distribution, but less strongly. In conclusion, the colocalization of TGF- with neuromuscular junctions may suggest a significant function in neuromuscular communication.  相似文献   

2.
Acute coronary syndrome (ACS) is the leading cause of death in elderly patients worldwide. Due its participation in apoptosis, fibrosis, and angiogenesis, transforming growth factor-β (TGF-β) isoforms had been categorized as risk factors for cardiovascular diseases. However, due their contradictory activities, a cardioprotective role has been suggested. The aim was to measure the plasma levels of TGF-β1, 2, and 3 proteins in patients with ACS. This was a case–control study including 225 subjects. The three activated isoforms were measured in serum using the Bio-Plex Pro TGF-β assay by means of magnetic beads; the fluorescence intensity of reporter signal was read in a Bio-Plex Magpix instrument. We observed a significant reduction of the three activated isoforms of TGF-β in patients with ACS. The three TGF-β isoforms were positively correlated with each other in moderate-to-strong manner. TGFβ-2 was inversely correlated with glucose and low-density lipoprotein (LDL)-cholesterol, whereas TGF-β3 was inversely correlated with the serum cholesterol concentration. The production of TGF-β1, TGF-β2, and TGF-β3 are decreased in the serum of patients with ACS. Further follow-up controlled studies with a larger sample size are needed, in order to test whether TGF-β isoforms could be useful as biomarkers that complement the diagnosis of ACS.  相似文献   

3.
Production of active TGF-β1 is one mechanism by which human regulatory T cells (Tregs) suppress immune responses. This production is regulated by glycoprotein A repetitions predominant (GARP), a transmembrane protein present on stimulated Tregs but not on other T lymphocytes (Th and CTLs). GARP forms disulfide bonds with proTGF-β1, favors its cleavage into latent inactive TGF-β1, induces the secretion and surface presentation of GARP·latent TGF-β1 complexes, and is required for activation of the cytokine in Tregs. We explored whether additional Treg-specific protein(s) associated with GARP·TGF-β1 complexes regulate TGF-β1 production in Tregs. We searched for such proteins by yeast two-hybrid assay, using GARP as a bait to screen a human Treg cDNA library. We identified lysosomal-associated transmembrane protein 4B (LAPTM4B), which interacts with GARP in mammalian cells and is expressed at higher levels in Tregs than in Th cells. LAPTM4B decreases cleavage of proTGF-β1, secretion of soluble latent TGF-β1, and surface presentation of GARP·TGF-β1 complexes by Tregs but does not contribute to TGF-β1 activation. Therefore, LAPTM4B binds to GARP and is a negative regulator of TGF-β1 production in human Tregs. It may play a role in the control of immune responses by decreasing Treg immunosuppression.  相似文献   

4.
Growth factors, such as platelet-derived growth factor BB (PDGF-BB) and transforming growth factor β (TGFβ), are key regulators of cellular functions, including proliferation, migration, and differentiation. Growth factor signaling is modulated by context-dependent cross-talk between different signaling pathways. We demonstrate in this study that PDGF-BB induces phosphorylation of Smad2, a downstream mediator of the canonical TGFβ pathway, in primary dermal fibroblasts. The PDGF-BB-mediated Smad2 phosphorylation was dependent on the kinase activities of both TGFβ type I receptor (TβRI) and PDGF β-receptor (PDGFRβ), and it was prevented by inhibitory antibodies against TGFβ. Inhibition of the activity of the TβRI kinase greatly reduced the PDGF-BB-dependent migration in dermal fibroblasts. Moreover, we demonstrate that the receptors for PDGF-BB and TGFβ interact physically in primary dermal fibroblasts and that stimulation with PDGF-BB induces internalization not only of PDGFRβ but also of TβRI. In addition, silencing of PDGFRβ by siRNA decreased the stability of TβRI and delayed TGFβ-induced signaling. We further show that the hyaluronan receptor CD44 interacts with both PDGFRβ and TβRI. Depletion of CD44 by siRNA increased signaling via PDGFRβ and TβRI by stabilizing the receptor proteins. Our data suggest that cross-talk between PDGFRβ and TβRI occurs in dermal fibroblasts and that CD44 negatively modulates signaling via these receptors.  相似文献   

5.
6.

Background

The association between polymorphisms rs6265 and rs2030324 in brain-derived neurotrophic factor (BDNF) and Alzheimer’s disease (AD) has been widely reported, but the results remain controversial.

Methods

A comprehensive search of Pubmed, Web of Science, China National Knowledge Infrastructure (CNKI), Wanfang Med Online and China Biology Medical literature database (CBM) was performed. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using fixed or random-effects models. We excluded the studies with OR>3.0 or OR<0.3 for sensitive analysis. Subgroup analysis by ethnicity, form of AD and gender was carried out. Meta-regression was conducted to explore the potential sources of between-study heterogeneity.

Results

29 articles with 7548 cases and 7334 controls concerning rs6265 and 22 articles with 5796 cases and 5706 controls concerning rs2030324 were included in this meta-analysis. The combined evidence suggested rs6265 contributing significantly to the increased risk of AD in females (codominant: fixed-effects model (FEM): OR = 1.13, 95% CI = 1.04–1.23; dominant: FEM: OR = 1.17, 95% CI = 1.05–1.31), especially for Caucasian females (codominant: FEM: OR = 1.18, 95% CI = 1.03–1.34; dominant: FEM: OR = 1.18, 95% CI = 1.01–1.37) and female late-onset Alzheimer’s disease (LOAD) patients (codominant: FEM: OR = 1.22, 95% CI = 1.05–1.41; dominant: FEM: OR = 1.23, 95% CI = 1.03–1.46). No evidence indicated an association between rs2030324 with AD in codominant (random-effects model (REM): OR = 1.06, 95% CI = 0.89–1.26) and dominant (REM: OR = 1.05, 95% CI = 0.86–1.27) models.

Conclusion

This meta-analysis suggested A allele of rs6265 might increase the risk of AD in Caucasian females and female LOAD patients. In addition, no evidence indicated an association between rs2030324 with AD. Further studies are needed to confirm these results.  相似文献   

7.
Recent studies have emphasized the role of the dioxin receptor (AhR) in maintaining cell morphology, adhesion, and migration. These novel AhR functions depend on the cell phenotype, and although AhR expression maintains mesenchymal fibroblasts migration, it inhibits keratinocytes motility. These observations prompted us to investigate whether AhR modulates the epithelial-to-mesenchymal transition (EMT). For this, we have used primary AhR+/+ and AhR−/− keratinocytes and NMuMG cells engineered to knock down AhR levels (sh-AhR) or to express a constitutively active receptor (CA-AhR). Both AhR−/− keratinocytes and sh-AhR NMuMG cells had increased migration, reduced levels of epithelial markers E-cadherin and β-catenin, and increased expression of mesenchymal markers Snail, Slug/Snai2, vimentin, fibronectin, and α-smooth muscle actin. Consistently, AhR+/+ and CA-AhR NMuMG cells had reduced migration and enhanced expression of epithelial markers. AhR activation by the agonist FICZ (6-formylindolo[3,2-b]carbazole) inhibited NMuMG migration, whereas the antagonist α-naphthoflavone induced migration as did AhR knockdown. Exogenous TGFβ exacerbated the promigratory mesenchymal phenotype in both AhR-expressing and AhR-depleted cells, although the effects on the latter were more pronounced. Rescuing AhR expression in sh-AhR cells reduced Snail and Slug/Snai2 levels and cell migration and restored E-cadherin levels. Interference of AhR in human HaCaT cells further supported its role in EMT. Interestingly, co-immunoprecipitation and immunofluorescence assays showed that AhR associates in common protein complexes with E-cadherin and β-catenin, suggesting the implication of AhR in cell-cell adhesion. Thus, basal or TGFβ-induced AhR down-modulation could be relevant in the acquisition of a motile EMT phenotype in both normal and transformed epithelial cells.  相似文献   

8.
Transforming growth factor β (TGF-β) and related cytokines play a central role in the vascular system. In vitro, TGF-β induces aortic endothelial cells to assemble subcellular actin-rich structures specialized for matrix degradation called podosomes. To explore further this TGF-β-specific response and determine in which context podosomes form, ALK5 and ALK1 TGF-β receptor signaling pathways were investigated in bovine aortic endothelial cells. We report that TGF-β drives podosome formation through ALK5 and the downstream effectors Smad2 and Smad3. Concurrent TGF-β-induced ALK1 signaling mitigates ALK5 responses through Smad1. ALK1 signaling induced by BMP9 also antagonizes TGF-β-induced podosome formation, but this occurs through both Smad1 and Smad5. Whereas ALK1 neutralization brings ALK5 signals to full potency for TGF-β-induced podosome formation, ALK1 depletion leads to cell disturbances not compatible with podosome assembly. Thus, ALK1 possesses passive and active modalities. Altogether, our results reveal specific features of ALK1 and ALK5 signaling with potential clinical implications.  相似文献   

9.
Increased expression of metalloprotease-disintegrin ADAM12 is a hallmark of several pathological conditions, including cancer, cardiovascular disease, and certain inflammatory diseases of the central nervous system or the muscoskeletal system. We show that transforming growth factor β1 (TGFβ1) is a potent inducer of ADAM12 mRNA and protein in mouse fibroblasts and in mouse and human mammary epithelial cells. Induction of ADAM12 is detected within 2 h of treatment with TGFβ1, is Smad2/Smad3-dependent, and is a result of derepression of the Adam12 gene. SnoN, a negative regulator of the TGFβ signaling pathway, is a master regulator of ADAM12 expression in response to TGFβ1 stimulation. Overexpression of SnoN in NIH3T3 cells reduces the magnitude of ADAM12 induction by TGFβ1 treatment. Down-regulation of SnoN expression by short hairpin RNA enhances TGFβ1-induced expression of ADAM12. In a panel of TGFβ1-responsive cancer cell lines with high expression of SnoN, induction of ADAM12 by TGFβ1 is significantly impaired, suggesting that the endogenous SnoN plays a role in regulating ADAM12 expression in response to TGFβ1. Identification of SnoN as a repressor of the ADAM12 gene should contribute to advances in the studies on the role of ADAM12 in tumor progression and in the development of other pathologies.  相似文献   

10.
11.
Increased expression of transforming growth factor-β1 (TGF-β1) in glomerular mesangial cells (MC) augments extracellular matrix accumulation and hypertrophy during the progression of diabetic nephropathy (DN), a debilitating renal complication of diabetes. MicroRNAs (miRNAs) play key roles in the pathogenesis of DN by modulating the actions of TGF-β1 to enhance the expression of profibrotic genes like collagen. In this study, we found a significant decrease in the expression of miR-130b in mouse MC treated with TGF-β1. In parallel, there was a down-regulation in miR-130b host gene 2610318N02RIK (RIK), suggesting host gene-dependent expression of this miRNA. TGF-β receptor 1 (TGF-βR1) was identified as a target of miR-130b. Interestingly, the RIK promoter contains three NF-Y binding sites and was regulated by NF-YC. Furthermore, NF-YC expression was inhibited by TGF-β1, suggesting that a signaling cascade, involving TGF-β1-induced decreases in NF-YC, RIK, and miR-130b, may up-regulate TGF-βR1 to augment expression of TGF-β1 target fibrotic genes. miR-130b was down-regulated, whereas TGF-βR1, as well as the profibrotic genes collagen type IV α 1 (Col4a1), Col12a1, CTGF, and PAI-1 were up-regulated not only in mouse MC treated with TGF-β1 but also in the glomeruli of streptozotocin-injected diabetic mice, supporting in vivo relevance. Together, these results demonstrate a novel miRNA- and host gene-mediated amplifying cascade initiated by TGF-β1 that results in the up-regulation of profibrotic factors, such as TGF-βR1 and collagens associated with the progression of DN.  相似文献   

12.
Throughout postnatal development, the gastric epithelium expresses Transforming Growth Factor beta1 (TGFβ1), but it is also exposed to luminal peptides that are part of milk. During suckling period, fasting promotes the withdrawal of milk-born molecules while it stimulates gastric epithelial cell proliferation. Such response can be reversed by exogenous TGFβ1, as it directly affects cell cycle through the regulation of p27 levels. We used fasting condition to induce the hyperproliferation of gastric epithelial cells in 14-day-old Wistar rats, and evaluated the effects of TGFβ1 gavage on p27 expression, phosphorylation at threonine 187 (phospho-p27Thr187) and degradation. p27 protein level was reduced during fasting when compared to suckling counterparts, while phospho-p27Thr187/p27 ratio was increased. TGFβ1 gavage reversed this response, which was confirmed through immunostaining. By using a neutralizing antibody against TGFβ1, we found that it restored the p27 and phosphorylation levels detected during fasting, indicating the specific role of the growth factor. We noted that neither fasting nor TGFβ1 changed p27 expression, but after cycloheximide administration, we observed that protein synthesis was influenced by TGFβ1. Next, we evaluated the capacity of the gastric mucosa to degrade p27 and we recorded a higher concentration of the remaining protein in pups treated with TGFβ1, suggesting augmented stability under this condition. Thus, we showed for the first time that luminal TGFβ1 increased p27 levels in the rat gastric mucosa by up- regulating translation and reducing protein degradation. We concluded that such mechanisms might be used by rapidly proliferating cells to respond to milk-born TGFβ1 and food restriction.  相似文献   

13.
Multiple sclerosis is a neurodegenerative disease characterized by the present of leukocytes in the brain tissue and subsequently the formation of sclerotic plaques. Leukocytes penetration into the blood–brain barrier is related to several factors, such as, the conversion of leukocyte gene expression or plasma characteristics. In this frame, we explore alteration of matrix metalloproteinase-2 (MMP-2), transforming growth factor beta (TGF-β) family, and Claudin-11 (as a main myelin structural protein) in leukocytes and blood plasma of multiple sclerosis patients compared to the normal group. Blood samples were collected from thirteen men affected by MS and fifteen healthy men. Leukocyte gene expression was measured using real-time PCR and plasma parameters were examined by ELISA. The results of this study showed that the gene expression of Claudin-11 was significantly higher in MS group compared with normal. Interestingly, the MMP-2 pattern was similar to Claudin-11 and correlated positively with it. It was observed that, although the expressions of TGF-β1 and TGF-β2 are down-regulated in the leukocytes of subjects with MS, they showed higher levels of these cytokines in blood plasma. The plasma level of TGF-β3 in MS patients was higher than normal and correlated with Claudin-11 concentration. In conclusion, the aberrant pattern of Claudin-11, TGF-βs family, and MMP-2 expression in leukocytes of the MS patients was observed in this study. Moreover, the plasma levels of TGF-βs family increased in the MS group. The findings of this study provide clues for further investigations to assay MS pathogenesis.  相似文献   

14.
15.
Wang  Zhaotao  Liu  Zhi  Yu  Guoyong  Nie  Xiaohu  Jia  Weiqiang  Liu  Ru-en  Xu  Ruxiang 《Neurochemical research》2018,43(3):760-774

Paeoniflorin (PF) is a polyphenolic compound derived from Radix Paeoniae Alba thathas anti-cancer activities in a variety of human malignancies including glioblastoma. However, the underlying mechanisms have not been fully elucidated. Epithelial to mesenchymal transition (EMT), characterized as losing cell polarity, plays an essential role in tumor invasion and metastasis. TGFβ, a key member of transforming growth factors, has been demonstrated to contribute to glioblastoma aggressiveness through inducing EMT. Therefore, the present studies aim to investigate whether PF suppresses the expression of TGFβ and inhibits EMT that plays an important role in anti-glioblastoma. We found that PF dose-dependently downregulates the expression of TGFβ, enhances apoptosis, reduces cell proliferation, migration and invasion in three human glioblastoma cell lines (U87, U251, T98G). These effects are enhanced in TGFβ siRNA treated cells and abolished in cells transfected with TGFβ lentiviruses. In addition, other EMT markers such as snail, vimentin and N-cadherin were suppressed by PF in these cell lines and in BALB/c nude mice injected with U87 cells. The expression of MMP2/9, EMT markers, are also dose-dependently reduced in PF treated cells and in U87 xenograft mouse model. Moreover, the tumor sizes are reduced by PF treatment while there is no change in body weight. These results indicate that PF is a potential novel drug target for the treatment of glioblastoma by suppression of TGFβ signaling pathway and inhibition of EMT.

  相似文献   

16.
Transforming growth factor-β-activated kinase 1 (TAK1), an MAP3K, is a key player in processing a multitude of inflammatory stimuli. TAK1 autoactivation involves the interplay with TAK1-binding proteins (TAB), e.g. TAB1 and TAB2, and phosphorylation of several activation segment residues. However, the TAK1 autoactivation is not yet fully understood on the molecular level due to the static nature of available x-ray structural data and the complexity of cellular systems applied for investigation. Here, we established a bacterial expression system to generate recombinant mammalian TAK1 complexes. Co-expression of TAK1 and TAB1, but not TAB2, resulted in a functional and active TAK1-TAB1 complex capable of directly activating full-length heterotrimeric mammalian AMP-activated protein kinase (AMPK) in vitro. TAK1-dependent AMPK activation was mediated via hydrophobic residues of the AMPK kinase domain αG-helix as observed in vitro and in transfected cell culture. Co-immunoprecipitation of differently epitope-tagged TAK1 from transfected cells and mutation of hydrophobic αG-helix residues in TAK1 point to an intermolecular mechanism of TAB1-induced TAK1 autoactivation, as TAK1 autophosphorylation of the activation segment was impaired in these mutants. TAB1 phosphorylation was enhanced in a subset of these mutants, indicating a critical role of αG-helix residues in this process. Analyses of phosphorylation site mutants of the activation segment indicate that autophosphorylation of Ser-192 precedes TAB1 phosphorylation and is followed by sequential phosphorylation of Thr-178, Thr-187, and finally Thr-184. Finally, we present a model for the chronological order of events governing TAB1-induced TAK1 autoactivation.  相似文献   

17.

Background

Evidence is increasingly accumulated about multiple roles for the β2-adrenoceptor gene in asthma. The results were inconsistent partly due to small sample sizes. To assess the association between β2-adrenoceptor gene polymorphisms and asthma risk, a meta-analysis was performed.

Methods

We comprehensively searched the PubMed, EMBASE, BIOSIS Previews databases and extracted data from all eligible articles to estimate the association between β2-adrenoceptor gene polymorphisms and asthma risk. The pooled odds ratio (OR) with 95% confidence intervals (CIs) were calculated.

Results

Thirty-seven studies involving 6648 asthma patients and 15943 controls were included in the meta-analysis. Overall, significant associations were found in allelic genetic model (OR = 1.06, 95% CI = 1.01∼1.12), recessive genetic model (OR = 1.11, 95% CI = 1.02∼1.21) for Arg/Gly16. Stratified by ethnicity and age, significant associations were also found in Asian population in allelic genetic model, recessive genetic model and addictive model. For Gln/Glu27, no significant association was found when we combined all eligible studies. Age stratification showed significant associations in adults in allelic genetic model and recessive genetic model, but no significant association was found among Asians and Caucasians in ethnicity stratification.

Conclusions

This meta-analysis implied that the β2-adrenoceptor Arg/Gly16 polymorphism was likely to contribute to asthma risk in Asian population. Gln/Glu27 polymorphism might be a contributor to asthma susceptibility for adults.  相似文献   

18.
19.
Expanding interest in oxytocin, particularly the role of endogenous oxytocin in human social behavior, has created a pressing need for replication of results and verification of assay methods. In this study, we sought to replicate and extend previous results correlating plasma oxytocin with trust and trustworthy behavior. As a necessary first step, the two most commonly used commercial assays were compared in human plasma via the addition of a known quantity of exogenous oxytocin, with and without sample extraction. Plasma sample extraction was found to be critical in obtaining repeatable concentrations of oxytocin. In the subsequent trust experiment, twelve samples in duplicate, from each of 82 participants, were collected over approximately six hours during the performance of a Prisoner’s Dilemma task paradigm that stressed human interpersonal trust. We found no significant relationship between plasma oxytocin concentrations and trusting or trustworthy behavior. In light of these findings, previous published work that used oxytocin immunoassays without sample extraction should be reexamined and future research exploring links between endogenous human oxytocin and trust or social behavior should proceed with careful consideration of methods and appropriate biofluids for analysis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号